K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 giờ trước (8:47)

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


23 giờ trước (13:15)

Gọi \(\angle A O C = \alpha\). Đây là góc ở tâm chắn cung \(A C\)

Quan sát hình: cung \(B D\) gồm 3 lần liên tiếp cung \(A C\) (từ B → C, C → A, A → D)

Góc ở tâm \(\angle B O D\) chắn cung \(B D\) nên:

\(\angle B O D = 3 \times \angle A O C .\)

Vậy \(\angle B O D = 3 \angle A O C\)

10 tháng 8

giúp mình từ câu 9 với


Câu 5:

AB=1,6+25=26,6(m)

Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)

\(\hat{xAC}=38^0\)

nên \(\hat{ACB}=38^0\)

Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)

=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)

=>Chiếc xe cách chân tòa nhà khoảng 34m


Câu 7:

Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)

nênAHBD là hình chữ nhật

=>HB=AD=68(m)

Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)

=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)

Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)

=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)

BC=BH+CH=68+119,26≃187,3(m)


Xét một phân số trong tổng:

\(\frac{1}{\sqrt{k} + \sqrt{k + 1}}\)

Nhân cả tử và mẫu với \(\sqrt{k + 1} - \sqrt{k}\), ta được:

\(\frac{1}{\sqrt{k} + \sqrt{k + 1}} = \frac{\sqrt{k + 1} - \sqrt{k}}{\left(\right. \sqrt{k} + \sqrt{k + 1} \left.\right) \left(\right. \sqrt{k + 1} - \sqrt{k} \left.\right)} = \sqrt{k + 1} - \sqrt{k}\)

Vậy:

\(A=\left(\right.\sqrt{2}-\sqrt{1}\left.\right)+\left(\right.\sqrt{3}-\sqrt{2}\left.\right)+\cdots+\left(\right.\sqrt{n + 1}-\sqrt{n}\left.\right)\)

Cộng các hạng tử lại, ta thấy \(\sqrt{2}\) ở số hạng đầu bị trừ đi ở số hạng sau, \(\sqrt{3}\) cũng vậy,… chỉ còn:

\(A = \sqrt{n + 1} - \sqrt{1} = \sqrt{n + 1} - 1\)

Đáp số: \(\sqrt{n + 1} - 1\)

Tham khảo

a: Xét (O) có

ΔABP nội tiếp

AP là đường kính

Do đó: ΔABP vuông tại B

=>BA⊥BP

mà CH⊥BA

nên CH//BP

Xét (O) có

ΔACP nội tiếp

AP là đường kính

Do đó: ΔACP vuông tại C

=>CP⊥CA

mà BH⊥CA

nên BH//CP

Xét tứ giác BHCP có

BH//CP

BP//CH

Do đó: BHCP là hình bình hành

Gọi HP cắt CB tại I

BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>I là trung điểm chung của HP và BC

Xét (O) có

ΔAKP nội tiếp

AP là đường kính

Do đó: ΔAKP vuông tại K

=>AK⊥KP

mà AK⊥BC

nên PK//BC

Xét ΔHKP có

I là trung điểm của HP

DI//KP

Do đó: D là trung điểm của HK

=>DH=DK

b: Xét ΔCKH có

CD là đường cao

CD là đường trung tuyến

Do đó: ΔCKH cân tại C

=>CH=CK

mà CH=BP

nên BP=CK

Xét tứ giác BCPK có

BC//PK

BP=CK

Do đó: BCPK là hình thang cân