K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (9:21)

a: Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\left|y-2\right|\ge0\forall y\)

Do đó: \(\left|x+2\right|+\left|y-2\right|\ge0\forall x,y\)

=>\(-\left|x+2\right|-\left|y-2\right|\le0\forall x,y\)

=>\(A=-\left|x+2\right|-\left|y-2\right|+2024\le2024\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x+2=0\\ y-2=0\end{cases}\Rightarrow\begin{cases}x=-2\\ y=2\end{cases}\)

b: Ta có: \(\left|2x+5\right|\ge0\forall x\)

=>\(\left|2x+5\right|+2024\ge2024\forall x\)

=>\(B=\frac{2023}{\left|2x+5\right|+2024}\le\frac{2023}{2024}\forall x\)

Dấu '=' xảy ra khi 2x+5=0

=>2x=-5

=>\(x=-\frac52\)

5 giờ trước (12:34)

a) Tìm giá trị lớn nhất của \(A = 2024 - \mid x + 2 \mid - \mid y - 2 \mid\)

Biểu thức \(A\) có chứa các giá trị tuyệt đối \(\mid x + 2 \mid\) và \(\mid y - 2 \mid\). Để \(A\) có giá trị lớn nhất, chúng ta cần làm sao cho các giá trị tuyệt đối này nhỏ nhất, bởi vì \(A\) là một hiệu và giá trị tuyệt đối luôn không âm. Do đó, \(A\) sẽ lớn nhất khi các biểu thức trong giá trị tuyệt đối đạt giá trị bằng 0.

Phân tích chi tiết:

  • \(\mid x + 2 \mid\) đạt giá trị nhỏ nhất bằng 0 khi \(x = - 2\).
  • \(\mid y - 2 \mid\) đạt giá trị nhỏ nhất bằng 0 khi \(y = 2\).

Vậy, khi \(x = - 2\) và \(y = 2\), ta có:

\(A = 2024 - \mid x + 2 \mid - \mid y - 2 \mid = 2024 - 0 - 0 = 2024\)

Do đó, giá trị lớn nhất của \(A\) là 2024.


b) Tìm giá trị lớn nhất của \(B = \frac{2023}{\mid 2 x + 5 \mid} + 2024\)

Biểu thức \(B\) có dạng tổng của hai phần, trong đó phần thứ nhất là \(\frac{2023}{\mid 2 x + 5 \mid}\) và phần thứ hai là một hằng số \(2024\). Để tìm giá trị lớn nhất của \(B\), chúng ta cần làm sao cho phần \(\frac{2023}{\mid 2 x + 5 \mid}\) đạt giá trị lớn nhất.

Phân tích chi tiết:

  • Phần \(\frac{2023}{\mid 2 x + 5 \mid}\) có giá trị lớn nhất khi \(\mid 2 x + 5 \mid\) nhỏ nhất. Vì \(\mid 2 x + 5 \mid \geq 0\), ta cần \(\mid 2 x + 5 \mid\) càng nhỏ càng tốt.
  • \(\mid 2 x + 5 \mid\) đạt giá trị nhỏ nhất bằng 0 khi \(2 x + 5 = 0\), tức là \(x = - \frac{5}{2}\).

Vậy khi \(x = - \frac{5}{2}\), ta có:

\(B = \frac{2023}{\mid 2 x + 5 \mid} + 2024 = \frac{2023}{0} + 2024\)

Tuy nhiên, chia cho 0 là không xác định và không thể đạt được giá trị tại \(x = - \frac{5}{2}\). Vì vậy, ta không thể chọn \(x = - \frac{5}{2}\).

Tuy nhiên, khi \(\mid 2 x + 5 \mid\) càng lớn, phần \(\frac{2023}{\mid 2 x + 5 \mid}\) sẽ càng nhỏ, và ta muốn giá trị của \(\frac{2023}{\mid 2 x + 5 \mid}\) càng nhỏ thì \(B\) sẽ đạt giá trị tối thiểu. Giá trị lớn nhất của \(B\) sẽ đạt được khi \(\mid 2 x + 5 \mid\) đạt giá trị nhỏ nhất nhưng không bằng 0.

Do đó, giá trị lớn nhất có thể đạt được cho \(B\) khi \(2 x + 5\) càng gần 0.

NV
17 giờ trước (0:10)

Do \(\frac{45}{38}<\frac{76}{38}=2\)

\(\frac{76}{38}=\frac42<\frac52\)

Nên \(\frac{45}{38}<\frac52\)

10 giờ trước (7:13)

\(\frac{45}{38}\) < \(\frac{45}{18}\) = \(\frac52\)

P
Phong
CTVHS
10 giờ trước (7:09)

Ta có:

`45/38<76/38=2`

`5/2>4/2=2`

Suy ra đượ: `45/38<2` và `5/2>2`

Theo tính chất trên thì: `45/38<5/2`

---------------------

Giải thích:

Trong bài này ta xem:

`45/38` là `x`

`2` là `y`

`5/2` là `z`

Từ đó `x<y` và `y<z` suy ra được: `x<z`

10 giờ trước (7:14)

\(\frac{45}{38}\) < \(\frac{45}{18}\) = \(\frac52\)

NV
19 giờ trước (22:03)

Căn nhà có kích thước thế nào em?

Nếu đề ko cho sẵn thì em lấy đại 1 kích thước, ví dụ dài 15m rộng 5m chẳng hạn

Khi đó diện tích căn nhà là: \(15.5=75m^2\)

5 giờ trước (12:39)

diện tích căn nhà là
25x5=125m2

NV
20 giờ trước (21:32)

Để \(x+\frac{1}{x}\) xác định thì x≠0

Do x hữu tỉ và \(x+\frac{1}{x}\in Z\) , đặt \(x=\frac{a}{b}\) với a;b là các số nguyên khác 0, \(\left(a,b\right)=1\) và đặt \(x+\frac{1}{x}=n\in Z\)

Khi đó: \(\frac{a}{b}+\frac{b}{a}=n\Rightarrow a\left(\frac{a}{b}+\frac{b}{a}\right)=a.n\)

\(\Rightarrow\frac{a^2}{b}+b=a.n\Rightarrow\frac{a^2}{b}=a.n-b\)

Do a,b,n nguyên nên \(a.n-b\in Z\Rightarrow\frac{a^2}{b}\in Z\)

\(\left(a,b\right)=1\Rightarrow b=\pm1\)

Chứng minh tương tự ta có \(\frac{b^2}{a}\in Z\) và (a,b)=1 nên suy ra \(a=\pm1\)

=>\(x=\frac{a}{b}=\pm1\)

Vậy \(x=\pm1\) là số hữu tỉ thỏa mãn yêu cầu

4 giờ trước (12:43)

Để tìm số hữu tỉ \(x\) sao cho biểu thức sau nhận giá trị nguyên:

\(x + \frac{1}{x}\)

ta cần phân tích và giải bài toán này một cách chi tiết.

Bước 1: Giả sử \(x + \frac{1}{x} = n\), với \(n\) là một số nguyên.

Ta sẽ cố gắng tìm điều kiện để biểu thức này là một số nguyên.

  • Từ \(x + \frac{1}{x} = n\), ta nhân cả hai vế với \(x\) để loại bỏ mẫu số:
    \(x^{2} + 1 = n \cdot x\)
    hay là:
    \(x^{2} - n \cdot x + 1 = 0\)

Bước 2: Giải phương trình bậc 2

Phương trình \(x^{2} - n \cdot x + 1 = 0\) là một phương trình bậc 2 đối với \(x\). Ta có thể giải phương trình này bằng công thức nghiệm phương trình bậc 2:

\(x = \frac{- \left(\right. - n \left.\right) \pm \sqrt{\left(\right. - n \left.\right)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}\)\(x = \frac{n \pm \sqrt{n^{2} - 4}}{2}\)

Bước 3: Điều kiện để \(x\) là số hữu tỉ

Để \(x\) là một số hữu tỉ, căn bậc hai \(\sqrt{n^{2} - 4}\) phải là một số nguyên, tức là:

\(n^{2} - 4 \&\text{nbsp};\text{ph}ả\text{i}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{ch} \overset{ˊ}{\imath} \text{nh}\&\text{nbsp};\text{ph}ưo\text{ng} .\)

Gọi \(n^{2} - 4 = k^{2}\) với \(k\) là một số nguyên. Ta có:

\(n^{2} - k^{2} = 4\)\(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\)

Bước 4: Giải phương trình \(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\)

Giải phương trình \(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\), ta có các cặp nghiệm của \(\left(\right. n - k , n + k \left.\right)\) là các cặp số nhân với nhau ra 4:

  • \(\left(\right. 1 , 4 \left.\right)\)
  • \(\left(\right. - 1 , - 4 \left.\right)\)
  • \(\left(\right. 2 , 2 \left.\right)\)
  • \(\left(\right. - 2 , - 2 \left.\right)\)

Từ đây, ta tìm được các giá trị của \(n\) và \(k\).

Trường hợp 1: \(n - k = 1\) và \(n + k = 4\)

\(n - k = 1 \text{v} \overset{ˋ}{\text{a}} n + k = 4\)

Cộng hai phương trình:

\(2 n = 5 \Rightarrow n = \frac{5}{2}\)

Vậy \(n = \frac{5}{2}\) không phải là một số nguyên, do đó loại.

Trường hợp 2: \(n - k = - 1\) và \(n + k = - 4\)

\(n - k = - 1 \text{v} \overset{ˋ}{\text{a}} n + k = - 4\)

Cộng hai phương trình:

\(2 n = - 5 \Rightarrow n = \frac{- 5}{2}\)

Vậy \(n = \frac{- 5}{2}\) cũng không phải là một số nguyên, do đó loại.

Trường hợp 3: \(n - k = 2\) và \(n + k = 2\)

\(n - k = 2 \text{v} \overset{ˋ}{\text{a}} n + k = 2\)

Cộng hai phương trình:

\(2 n = 4 \Rightarrow n = 2\)

Vậy \(n = 2\).

Trường hợp 4: \(n - k = - 2\) và \(n + k = - 2\)

\(n - k = - 2 \text{v} \overset{ˋ}{\text{a}} n + k = - 2\)

Cộng hai phương trình:

\(2 n = - 4 \Rightarrow n = - 2\)

Vậy \(n = - 2\).

Bước 5: Tính giá trị của \(x\)

Với \(n = 2\) và \(n = - 2\), ta thay vào công thức giải phương trình bậc 2 \(x = \frac{n \pm \sqrt{n^{2} - 4}}{2}\).

Trường hợp \(n = 2\):

\(x = \frac{2 \pm \sqrt{2^{2} - 4}}{2} = \frac{2 \pm \sqrt{4 - 4}}{2} = \frac{2 \pm 0}{2} = 1\)

Trường hợp \(n = - 2\):

\(x = \frac{- 2 \pm \sqrt{\left(\right. - 2 \left.\right)^{2} - 4}}{2} = \frac{- 2 \pm \sqrt{4 - 4}}{2} = \frac{- 2 \pm 0}{2} = - 1\)

Kết luận:

Vậy, giá trị của \(x\) là 1 hoặc -1.

Trong thế giới hiện đại, công nghệ đã len lỏi vào từng ngóc ngách của cuộc sống, và giáo dục cũng không nằm ngoài guồng quay ấy. Một trong những nền tảng học tập trực tuyến mà em yêu thích nhất chính là OLM – người bạn đồng hành đáng tin cậy trên hành trình chinh phục tri thức.Ngay từ lần đầu truy cập vào OLM, em đã bị ấn tượng bởi giao diện thân thiện, dễ sử dụng. Màu sắc...
Đọc tiếp


Trong thế giới hiện đại, công nghệ đã len lỏi vào từng ngóc ngách của cuộc sống, và giáo dục cũng không nằm ngoài guồng quay ấy. Một trong những nền tảng học tập trực tuyến mà em yêu thích nhất chính là OLM – người bạn đồng hành đáng tin cậy trên hành trình chinh phục tri thức.


Ngay từ lần đầu truy cập vào OLM, em đã bị ấn tượng bởi giao diện thân thiện, dễ sử dụng. Màu sắc trang nhã, bố cục rõ ràng khiến em cảm thấy thoải mái như đang bước vào một lớp học thực thụ. Các môn học được phân chia khoa học, từ Toán, Văn, Anh đến Khoa học, Lịch sử… mỗi môn đều có hệ thống bài giảng, bài tập và kiểm tra phong phú.


Điều em thích nhất ở OLM là các bài giảng được trình bày ngắn gọn, dễ hiểu, kèm theo hình ảnh minh họa và video sinh động. Mỗi khi em gặp bài khó, chỉ cần xem lại bài giảng hoặc làm bài luyện tập là có thể hiểu ngay. Hệ thống chấm điểm tự động giúp em biết được kết quả ngay sau khi nộp bài, từ đó rút kinh nghiệm và cải thiện từng ngày.


Không chỉ học tập, OLM còn có phần thi đấu giữa các học sinh trên toàn quốc. Mỗi lần tham gia, em như được tiếp thêm động lực, cố gắng hết mình để vượt qua thử thách và vươn lên. Những chiếc huy hiệu, bảng xếp hạng và lời động viên từ hệ thống khiến em cảm thấy mình đang được công nhận và khích lệ.


OLM không chỉ là một khóa học trực tuyến, mà còn là người thầy kiên nhẫn, người bạn đồng hành tận tụy. Nhờ có OLM, việc học của em trở nên thú vị hơn, hiệu quả hơn và đầy cảm hứng. Em mong rằng nền tảng này sẽ ngày càng phát triển, giúp nhiều bạn học sinh trên khắp cả nước tiếp cận tri thức một cách dễ dàng và vui vẻ.

Các bạn ơi , đọc xong cho mình nhận xét và bình luận ở bên dưới nhé !

6
21 giờ trước (20:37)

cho mk 1 like nhé


21 giờ trước (20:37)

bạn làm bài hay lắm đó

21 giờ trước (19:39)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


21 giờ trước (19:47)

Đỉnh

22 giờ trước (19:27)

a: \(5^{9765625}=5^{5^{10}}=\left(5^5\right)^{10}=3125^{10}\)

\(4^{10000000}=4^{10^7}=\left(4^7\right)^{10}=16384^{10}\)

mà 3125<16384

nên \(5^{9765625}<4^{10000000}\)

b: \(3^{5000000}=\left(3^5\right)^{1000000}=243^{1000000}\)

\(2^{6000000}=\left(2^6\right)^{1000000}=64^{1000000}\)

mà 243>64

nên \(3^{5000000}>2^{6000000}\)

c: \(10^{1000000}=\left(10^5\right)^{200000}=100000^{200000}\)

\(8^{1200000}=\left(8^6\right)^{200000}=262144^{200000}\)

mà 100000<262144

nên \(10^{1000000}<8^{1200000}\)

4 giờ trước (12:52)

Để so sánh các số trong các cặp này, ta sẽ tiến hành phân tích các giá trị một cách cụ thể.

a) So sánh \(5^{9765625}\) và \(4^{10000000}\)

Để so sánh hai số này, một cách tiếp cận là nhìn vào cơ số của chúng và mối quan hệ giữa chúng. Cả \(5^{9765625}\) và \(4^{10000000}\) đều là số rất lớn, nhưng cơ số của chúng có sự khác biệt:

  • \(5^{9765625}\) có cơ số là 5.
  • \(4^{10000000}\) có cơ số là 4.

Vì \(5 > 4\), và \(9765625 < 10000000\), ta có thể giả sử rằng \(5^{9765625}\) sẽ lớn hơn \(4^{10000000}\). Điều này đúng vì dù số mũ của \(4^{10000000}\) lớn hơn, cơ số của \(5^{9765625}\) lớn hơn nhiều, ảnh hưởng mạnh hơn đến giá trị cuối cùng.

Kết luận: \(5^{9765625} > 4^{10000000}\).


b) So sánh \(3^{5000000}\) và \(2^{6000000}\)

Tương tự như trong câu a, ta sẽ so sánh các cơ số và số mũ:

  • \(3^{5000000}\) có cơ số là 3.
  • \(2^{6000000}\) có cơ số là 2.

Mặc dù \(2^{6000000}\) có số mũ lớn hơn, cơ số 3 của \(3^{5000000}\) lớn hơn cơ số 2. Do đó, \(3^{5000000}\) sẽ lớn hơn \(2^{6000000}\) vì cơ số lớn hơn tác động mạnh hơn số mũ, mặc dù số mũ của \(2^{6000000}\) lớn hơn.

Kết luận: \(3^{5000000} > 2^{6000000}\).


c) So sánh \(1^{}\) và \(8^{}\)

  • \(1^{} = 1\) (vì bất kỳ số nào mũ bao nhiêu cũng bằng 1 nếu cơ số là 1).
  • \(8^{}\) là một số rất lớn vì \(8 > 1\) và số mũ rất lớn.

Vì vậy, rõ ràng \(1^{} = 1\) sẽ nhỏ hơn \(8^{}\), vì \(8^{}\) là một số cực kỳ lớn.

Kết luận: \(1^{} < 8^{}\).


Tóm tắt kết quả:

a) \(5^{9765625} > 4^{10000000}\)
b) \(3^{5000000} > 2^{6000000}\)
c) \(1^{} < 8^{}\)

S
1 tháng 9

\(\frac{3^2}{2}-\left(4,5-\frac{13}{2}\right)\)

\(=\frac92-\left(\frac92-\frac{13}{2}\right)\)

\(=\frac92-\frac92+\frac{13}{2}\)

\(=\frac{13}{2}\)

\(\frac{3}{2}^{2} = \frac{9}{4}\)

\(4 , 5 = \frac{9}{2}\)

suy ra

\(\frac{9}{4} - \left(\right. \frac{9}{2} - \frac{13}{2} \left.\right)\) \(= \frac{9}{4} - \frac{\left(\right. 9 - 13 \left.\right)}{2}\) \(= \frac{9}{4} - \frac{- 4}{2}\) \(= \frac{9}{4} + \frac{4}{2}\) \(= \frac{9}{4} + \frac{8}{4} = \frac{17}{4}\)

vậy

\(\frac{17}{4}\)

a: \(\left|3x-1\right|\ge0\forall x\)

=>\(\left|3x-1\right|+2025\ge2025\forall x\)

Dấu '=' xảy ra khi 3x-1=0

=>3x=1

=>\(x=\frac13\)

b: Sửa đề: \(\left|2x+1\right|+\left|2y-1\right|+2\)

Ta có: \(\left|2x+1\right|\ge0\forall x\)

\(\left|2y-1\right|\ge0\forall y\)

Do đó: \(\left|2x+1\right|+\left|2y-1\right|\ge0\forall x,y\)

=>\(\left|2x+1\right|+\left|2y-1\right|+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}2x+1=0\\ 2y-1=0\end{cases}\Rightarrow\begin{cases}x=-\frac12\\ y=\frac12\end{cases}\)

1 tháng 9

Câu a:

A = |3\(x\) - 1| + 2025

A = |3\(x\) - 1| ≥ 0 ∀ \(x\)

A = |3\(x\) - 1| + 2025 ≥ 2025; Dấu = xảy ra khi:

3\(x\) - 1 = 0 ⇒ 3\(x\) = 1 ⇒ \(x=\frac13\)

Vậy Amin = 2025 khi \(x\) = \(\frac13\)

Câu b:

B = |2\(x\) + 1| - |2y - 1| + 2

|2\(x\) + 1| ≥ 0 ∀ \(x\) ; |2y - 1| ≥ 0 ∀ y

⇒ |2\(x\) + 1| - |2y - 1| + 2 ≥ 2 Dấu bằng xảy ra khi:

\(\begin{cases}2x+1=0\\ 2y-1=0\end{cases}\)

\(\begin{cases}2x=-1\\ 2y=1\end{cases}\)

\(\begin{cases}x=-\frac12\\ y=\frac12\end{cases}\)

Vậy Bmin = 2 khi (\(x;y\)) = (- \(\frac12\); \(\frac12\))