tìm số nguyên tố p sao cho p^2+23 có đúng 6 ước nguyên dương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HN
1
HN
2
HN
3
HN
1
HN
2

Nguyễn Trung Đông thân mến,
Bạn hỏi về bài toán: "Tìm số nguyên tố p sao cho số \(p^{2} + 23\) có đúng 6 ước nguyên dương."
Để giải bài này, ta cần hiểu cách tính số ước nguyên dương của một số tự nhiên.
Bước 1: Tính số ước nguyên dương của một số
\(n = p_{1}^{m_{1}} \times p_{2}^{m_{2}} \times \hdots \times p_{k}^{m_{k}}\)
thì số ước nguyên dương của \(n\) là:
\(\left(\right. m_{1} + 1 \left.\right) \left(\right. m_{2} + 1 \left.\right) \hdots \left(\right. m_{k} + 1 \left.\right)\)
Bước 2: Áp dụng cho bài toán
Bước 3: Thử các giá trị nguyên tố \(p\) nhỏ
\(p^{2} + 23 = 4 + 23 = 27 = 3^{3}\)
Số ước của 27 là \(3 + 1 = 4\), không phải 6.
\(9 + 23 = 32 = 2^{5}\)
Số ước của 32 là \(5 + 1 = 6\) — thỏa mãn điều kiện.
\(25 + 23 = 48 = 2^{4} \times 3\)
Số ước của 48 là \(\left(\right. 4 + 1 \left.\right) \left(\right. 1 + 1 \left.\right) = 5 \times 2 = 10\), không phải 6.
\(49 + 23 = 72 = 2^{3} \times 3^{2}\)
Số ước là \(\left(\right. 3 + 1 \left.\right) \left(\right. 2 + 1 \left.\right) = 4 \times 3 = 12\), không phải 6.
\(121 + 23 = 144 = 2^{4} \times 3^{2}\)
Số ước là \(\left(\right. 4 + 1 \left.\right) \left(\right. 2 + 1 \left.\right) = 5 \times 3 = 15\), không phải 6.
Kết luận:
Chỉ có \(p = 3\) thỏa mãn điều kiện để \(p^{2} + 23\) có đúng 6 ước nguyên dương, vì:
\(3^{2} + 23 = 32 = 2^{5}\)và số ước của 32 là 6.
Nếu bạn muốn tôi giải thích thêm về cách tính số ước hoặc các bước thử khác, hãy hỏi nhé!