tìm x biết
x : 2 + x : 2^2 + x : 2^3 +...+ x : 2^9 + x : 2^10 = 2^10 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
a: =>7/9:x=1/18-2/9=1/18-4/18=-3/18=-1/6
=>x=-7/9:1/6=-7/9*6=-42/9=-14/3
b: =>x*7/5=2/15+2/5=8/15
=>x=8/15:7/5=8/21
c: =>x-1/2=3/14:4/7=3/8
=>x=3/8+4/8=7/8
d: =>0,4x+0,3x-0,2x=0,7
=>0,5x=0,7
=>x=1,4
Bài 1:
a) \(x.\dfrac{3}{4}=\dfrac{9}{14}\)
\(\Rightarrow x=\dfrac{9}{14}:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{6}{7}\)
b) \(x:\dfrac{5}{9}=\dfrac{3}{10}\)
\(\Rightarrow x=\dfrac{3}{10}.\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{1}{6}\)
Mình xin trình bày 2 cách, một là phân tích bình thường, 2 là xài L'Hospital. Bởi c3 ko ai cho xài L'Hospital để hack tự luận cả
C1: Normal
\(\left(2-x\right)+\left(2-x\right)^2+...+\left(2-x\right)^9-9\)
\(=\left[\left(2-x\right)-1\right]+\left[\left(2-x\right)^2-1\right]+...+\left[\left(2-x\right)^9-1\right]\)
\(=\left(2-x-1\right)+\left(2-x-1\right)\left(2-x+1\right)+\left(2-x-1\right)\left[\left(2-x\right)^2+\left(2-x\right)+1\right]+...+\left(2-x-1\right)\left[\left(2-x\right)^8+\left(2-x\right)^7+...+1\right]\)
\(=-\left(x-1\right)\left(1+2-x+1+\left(2-x\right)^2+\left(2-x\right)+1+....+\left(2-x\right)^8+\left(2-x\right)^7+...+1\right)\)
Lai co:
\(x+x^2+...+x^{10}-10=\left(x-1\right)+\left(x^2-1\right)+...+\left(x^{10}-1\right)\)
\(=\left(x-1\right)+\left(x-1\right)\left(x+1\right)+....+\left(x-1\right)\left(x^9+x^8+...+1\right)\)
\(=\left(x-1\right)\left[1+x+1+x^2+x+1+....+x^9+x^8+...+1\right]\)
\(\Rightarrow\lim\limits_{x\rightarrow1}....=\lim\limits_{x\rightarrow1}\dfrac{-[1+2-x+1+\left(2-x\right)^2+\left(2-x\right)+1+...+\left(2-x\right)^8+\left(2-x\right)^7+...+1]}{1+x+1+x^2+x+1+...+x^9+x^8+...+1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-[9.1+8.\left(2-x\right)+7\left(2-x\right)^2+6\left(2-x\right)^3+5\left(2-x\right)^4+4\left(2-x\right)^5+3\left(2-x\right)^6+2\left(2-x\right)^7+\left(2-x\right)^8]}{10.1+9x^2+8x^3+7x^4+6x^5+5x^6+4x^7+3x^8+2x^9+x^{10}}\)
\(=\dfrac{-[1+2+3+...+9]}{1+2+3+...+10}=\dfrac{-45}{55}\)
C2: L'Hospital
\(=\lim\limits_{x\rightarrow1}\dfrac{-1-2\left(2-x\right)-3\left(2-x\right)^2-...-9\left(2-x\right)^8}{1+2x+3x^2+...+10x^9}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-1-2-3-...-9}{1+2+3+...+10}=-\dfrac{45}{55}\)
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=1\).
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=27\)
\(\Leftrightarrow x=\frac{9}{8}.\)
Mấy pài kia tương tự . :D
\(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow x-3=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
___________
\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
a) \(x=\dfrac{25}{72}\)
b)\(x=-\dfrac{1}{4}\)
\(x=\dfrac{3}{2}\)
c)\(x=\dfrac{5}{4}\) hoặc
x \(=\dfrac{8}{5}\)
d và e chịu vì mk kg giỏi lắm về mũ
f)\(x=-2\)
G)\(x=-\dfrac{5}{12}\)