K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

bài này đừng ai để bị lừa nhá 

Ta có : \(a+b=\frac{1}{4}a+\frac{3}{4}a+b\ge\frac{1}{4}a+2\sqrt{\frac{3}{4}a.b}\)(AM - GM)

\(\ge\frac{1}{4}.4+2\sqrt{\frac{3}{4}.12}=1+6=7\)(đpcm)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=4\\\frac{3}{4}a=b\end{cases}\Leftrightarrow\hept{\begin{cases}a=4\\b=3\end{cases}}}\)

14 tháng 2 2018

\(a\ge4\)

\(ab\ge12\)

\(a^2b\ge48\)

\(b\ge\frac{48}{a^2}\)

\(b\ge\frac{48}{16}=3\)

vay a+b >=7

17 tháng 11 2017

Áp dụng bđt coooossi : c = a+b = a/4 + (3/4a+b) >= a/4 + 2\(\sqrt{\frac{3}{4}.ab}\) >= 4/4 + 2\(\sqrt{\frac{3}{4}.12}\) = 1 + 2\(\sqrt{9}\) = 7

=> ĐPCM 

Dấu "=" xảy ra <=> a=4 ; ab=12 <=> a=4 ; b=3

k mk nha

18 tháng 5 2018

Ta có:\(C=a+b\)

\(C=\dfrac{9}{12}a+b+\dfrac{3}{12}a\)

\(C\ge2\sqrt{\dfrac{9}{12}ab}+\dfrac{3}{12}.4\)(AM-GM)

\(C\ge2\sqrt{\dfrac{9}{12}.12}+1\)

\(C\ge2.3+1=7\left(\text{đ}pcm\right)\)

"="<=>a=4;b=3

22 tháng 4 2018

Do : a ≥ 4

⇒ b ≥ \(\dfrac{12}{a}\) ≥ 3

⇒ a + b ≥ 4 + 3

⇒ a + b ≥ 7 ( chắc thế :D)

30 tháng 10 2015

\(\frac{3}{ab+bc+ca}=\frac{9}{3\left(ab+bc+ca\right)}\)

áp dụng hệ quả bun nhi a ta có: \(A\ge\frac{\left(3+1\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+ab+bc+ca}\)\(\ge\frac{16}{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{3}}=12\)

bằng khi a=b=c=1/3

31 tháng 10 2015

tạ duy phương: 

\(\frac{a_1^2}{x_1}+\frac{a^2_2}{x_2}\ge\frac{\left(a_1+a_2\right)^2}{x_1+x_2}\)tương tự áp dụng cho nhiều số

4 tháng 9 2017

5-6..thui..=>ko..hiểu

4 tháng 9 2017

Mình ko biết chắc đúng hết không,có gì mong bạn góp ý cho mình nha:

Ta có \(a+b+c=3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow1\ge\sqrt[3]{abc}\)

\(\Leftrightarrow1\ge abc\)

Ta có:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{\left(abc\right)^2}}=3\sqrt[3]{abc}=3\left(1\right)\)

Ta lại có \(\sqrt{abc}\ge\sqrt{1}=1\left(2\right)\)

Cộng \(\left(1\right)vs\left(2\right)\)lại ta có \(đpcm\)

Dấu \("="\)xảy ra khi \(a=b=c=1\)