2n^2+8n-11 chia hết cho n +3 tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
Mà n là số tự nhiên
⇒ n ∈ {2}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
Mà n là số tự nhiên
⇒ n ∈ {2; 0; 3; 4; 7}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
Mà n là số tự nhiên
⇒ n ∈ {0; 2}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
a) vì 2.3+3 chia hết cho 3 nên n = 3
b) vì 4.2+1=9 là bội của 2.2-1=3 nên n=2
C) vì 4-2=2 là ước của 8.4=32 nên n=4
a)
3n+1 chia hết cho 11-n=> -3(-n+11)+34 chia hết cho 11-n
Mà -3(-n+11) chia hết cho 11-n=>34 chia hết cho 11-n=>11-n thuộc U(34)={1,2,17,34,-1,-2,-17,-34} mà n thuộc N =>n thuộc {10,9,12,13,28,45}
a) Ta có : n-2017\(⋮\)n-2018
\(\Rightarrow\)n-2018+1\(⋮\)n-2018
Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018
\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)
+) n-2018=-1
n=2017 (thỏa mãn)
+) n-2018=1
n=2019 (thỏa mãn)
Vậy n\(\in\){2017;2019}
c) Ta có : 2n-3\(⋮\)2n-5
\(\Rightarrow\)2n-5+2\(⋮\)2n-5
Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5
\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2 (thỏa mãn)
+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3 (thỏa mãn)
+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5 (không thỏa mãn)
+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5 (không thỏa mãn)
Vậy n\(\in\){2;3}
Ta có:
A,3n +7 chia hết cho n ( đề bài)
Lại có: 3n chia hết cho n vì n nhân bất cứ số nào cũng chia hết cho n.(1)
Suy ra 7 chia hết cho n. Mà 7 chỉ chia hết cho 7 nên 3n+7 chia hết cho 7. (2)
Vậy ta có 3n +7 chia hết cho n.
Ta có:
B,4n chia hết cho 2n vì bất cứ số nào chia hết cho 4 cũng chia hết cho 2.
Mà 9 không chia hết cho 2n nên không tồn tại số tự nhiên n.
Phần c làm tương tự như phần b.
Phần d tớ chịu
C, 6n chia hết cho 3n vì bất cứ số nào chia hết cho 6 cũng chia hết cho 3.
Mà 11 không chia hết cho 3n nên không tồn tại số tự nhiên n
D, Mình không biết trình bày chỉ biết kết quả là 2 thui mong bạn thông cảm!
Mình trả lời hết rồi nhé!
\(2n^2+8n-11⋮n+3\)
\(\Rightarrow2n\times2n+8n-11⋮n+3\)
\(\Rightarrow2\left(n+3\right)\times2\left(n+3\right)+8\left(n+3\right)-35⋮n+3\)
\(\Rightarrow-35⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-35\right)\)
Rồi bạn tự kẻ bảng nha