CM K,M,N thẳng hàng
A B C F E H D K M N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) mối quan hệ giữa 3 điểm A ,B,D là:
- điểm D và điểm B nằm cùng phía đối với điểm A
- điểm A và điểm B nằm khác phía đối với điểm D
- điểm D nằm giữa hai điểm A và B
- điểm A và điểm D nằm cùng phía đối với điêm B
b ) 3 điểm B, C, E thẳng hàng
c ) bạn tự vẽ hình nha
a) Xét tam giác DEH và tam giác DFH ta có:
DE = DF ( tam giác DEF cân tại D )
DEH = DFH ( tam giác DEF cân tại D )
EH = EF ( H là trung điểm của EF )
=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)
=> DHE=DHF(hai góc tương ứng)
Mà DHE+DHF=180 độ =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )
b) Xét tam giác MEH và tam giac NFH ta có:
EH=FH(theo a)
MEH=NFH(theo a)
=> tam giác MEH = tam giác NFH ( ch-gn)
=> HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )
c) Ta có : +) DM+ME=DE =>DM=DE-ME
+) DN+NF=DF => DN=DF-NF
Mà DE=DF(theo a) ; ME=NF( theo b tam giác MEH=tam giác NFH)
=>DM=DN => tam giác DMN cân tại D
Xét tam giac cân DMN ta có:
DMN=DNM=180-MDN/2 (*)
Xét tam giác cân DEF ta có:
DEF=DFE =180-MDN/2 (*)
Từ (*) và (*) Suy ra góc DMN = góc DEF
Mà DMN và DEF ở vị trí đồng vị
=> MN//EF (dpcm)
d) Xét tam giác DEK và tam giác DFK ta có:
DK là cạnh chung
DE=DF(theo a)
=> tam giác DEK= tam giác DFK(ch-cgv)
=>DKE=DKF(2 góc tương ứng)
=>DK là tia phân giác của góc EDF (1)
Theo a tam giac DEH= tam giac DFH(c.g.c)
=>EDH=FDH(2 góc tương ứng)
=>DH là tia phân giác của góc EDF (2)
Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)
Cô hướng dẫn nhé.
a. FH // MC; KH // BD (Đường trung bìnhP
Vậy mà MN // DB (Góc đồng vị bằng nhau) nên FH và KH cùng song song một đường thẳng. Vậy F , K , H thẳng hàng. Tương tự với E, I ,N.
b. EF // CH; IK // AC nên EF // IK. Vậy EFIK là hình thang.
Lại có \(\widehat{EIK}=\widehat{ENH}=\widehat{FHN}=\widehat{FKI}\) nên nó là hình thang cân.
c. Em xem lại đề nhé.