cho a, b, c là độ dài 3 cạnh của 1 tam giác thỏa a+b+c=2, cm: a^2+b^2+c^2<2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ML
12 tháng 6 2015
Do 0 < a,b,c < 1 nên (a - 1)(b - 1)(c - 1) < 0
hay abc < ab + bc + ca - (a + b + c) + 1 = ab + bc + ca - 1
suy ra:a2 + b2 + c2 + 2abc < a2 + b2 + c2 + 2(ab + bc + ca - 1) = (a + b + c)2 - 2 = 22 - 2 = 2
11 tháng 6 2015
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
g thiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)
a^2+b^2+c^2+2abc<2
a,b,c là độ dài 3 cạnh của một tam giác nên a < b + c
\(\Leftrightarrow2a< a+b+c\Leftrightarrow2a< 2\Leftrightarrow a< 1\)
Chứng minh tương tự: b < 1; c < 1
\(\Rightarrow\hept{\begin{cases}1-a>0\\1-b>0\\1-c>0\end{cases}}\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow1-c-b+bc-a+ac+ab-abc>0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ac>abc\)
\(\Leftrightarrow1-2+ab+bc+ac>abc\)
\(\Leftrightarrow abc< -1+ab+bc+ac\)
\(\Leftrightarrow2abc< -2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< -2+2ab+2bc+2ac+a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< 2^2-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)