K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

#)Giải :

a) Đặt A = 29 + 299 = 29 + ( 211)

A = ( 2 + 211)( 2- 27 x 211 + ... - 2 x 277 + 288)

Nhân tử thứ nhất 2 + 211 = 2050

Nhân tử thứ hai là một số chẵn = 2A ( vì là tổng hiệu của các bội của 2 ) 

=> A = 2050 x 2A = 4100 x A => A chia hết cho 100

3 tháng 6 2019

#)Giải :

b) A = 3638+4143

A = 3633 . 365 + 4133

A = 3633 . 365 + 3633 - 3633 + 4133

A = 3633 ( 365 + 1 ) - (3633 - 4133)

A = 77.Q1 - 77.Q2

=> A chia hết cho 77

             #~Will~be~Pens~#

22 tháng 7 2018

Gọi A= 3638+4143 

 Để A chia hết cho 77 thì A phải chia hết cho 11 và 7

 *Cm A chia hết cho 7

   \(36\equiv1\left(mod7\right)\Rightarrow36^{38}\equiv1^{38}\left(mod7\right)\Leftrightarrow36^{38}\equiv1\left(mod7\right).\)

   \(41\equiv-1\left(mód7\right)\Rightarrow41^{43}\equiv-1^{43}\left(mod7\right)\Leftrightarrow41^{43}\equiv-1\left(mod7\right)\)

   =>    3638+4143 \(\equiv1+\left(-1\right)\left(mod7\right)\) <=> 3638+4143 \(\equiv\)0 ( mod 7 )  =>  3638+4143 chia hết cho 7   (1)

 *Cm A chia hết cho 11

  \(36\equiv3\left(mod11\right)\Rightarrow36^{38}\equiv3^{38}\left(mod11\right)\)

  \(41\equiv-3\left(mod7\right)\Rightarrow41^{43}\equiv-3^{43}\left(mod7\right)\) =>  -343 = -338.-35

 =>  3638+4143 \(\equiv\)(-338+338 ).-35 ( mod 7 ) 

     3638+4143 \(\equiv\) 0  (mod 7)        3638+4143 chia hết cho 11   (2)

   Từ (1) và (2) suy ra 3638+4143 chia hết cho 77 => btđcm

18 tháng 9 2015

36^38+41^33 
= 36^33 . 36^5 + 41^33 
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33 
= 36^33(36^5+ 1) - (36^33 - 41^33) 
= 77.Q1 - 77.Q2 
=> chia hết cho 77

18 tháng 9 2015

CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này: 
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1 
suy ra A mod 7 = 0 hay A chia hết cho 7. 
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242 
Vì 242 chia hết cho 11 nên A mod 11 = 0. 
Vậy A chia hết cho 7.11 =77

11 tháng 8 2016

 36^38+41^33 
= 36^33 . 36^5 + 41^33 
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33 
= 36^33(36^5+ 1) - (36^33 - 41^33) 
= 77.Q1 - 77.Q2 
=> chia hết cho 77

vì A chia hết 77 =>A chia hết cho 7 nên A= 36^38 + 41^33 chia hêt cho 7

24 tháng 6 2015

+) 36 đồng dư với  1 (mod 7)

=> 3638  đồng dư với  138 = 1  (mod 7)

41 đồng dư với (-1) (mod 7)

=> 4143 đồng dư với (-1)43  = -1 (mod 7)

Do đó: 3638 + 4143 đồng dư với 1 + (-1) = 0 (mod 7)

Hay 3638 + 4143 chia hết cho 7

+) 36 đồng dư với  3 (mod 11)

=> 3638  đồng dư với  338 (mod 11)

41 đồng dư với (-3) (mod 11)

=> 4143 đồng dư với (-3)43  = -1 (mod 7)

Do đó: 3638 + 4143 đồng dư với 3 38+ (-3)43  (mod 11)

mà 3 38+ (-3)43 = 338 .(1- 35) = 338. (-242) chia hết cho 11

=>  3638 + 4143 chia hết cho 11

Vậy 3638 + 4143 chia hết cho 11 và 7 => chia hết cho 77

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ký hiệu $\text{BSn}$ là bội số của số $n$

CM $A\vdots 7$

Ta có:

$36^{38}-1=(35+1)^38}-1=\text{BS35}+1-1=\text{BS35}=\text{BS7}\vdots 7$

$41^{43}+1=(42-1)^{43}+1=\text{BS42}-1+1=\text{BS42}=\text{BS7}\vdots 7$

Cộng theo vế:

$A=36^{38}+41^{43}\vdots 7(*)$

CM $A\vdots 11$

\(36^{38}-3^{38}=(33+3)^{38}-3^{38}=\text{BS33}+3^{38}-3^{38}=\text{BS33}=\text{BS11}\vdots 11\)

\(41^{43}+3^{43}=(44-3)^{43}+3^{43}=\text{BS44}-3^{43}+3^{43}=\text{BS44}=\text{BS11}\vdots 11\)

Cộng theo vế:

\(A+3^{43}-3^{38}\vdots 11\)

\(\Leftrightarrow A+3^{38}(3^5-1)\vdots 11\Leftrightarrow A+242.3^{38}\vdots 11\)

Mà $242.3^{38}=11.22.3^{38}\vdots 11$ nên $A\vdots 11(**)$

Từ $(*); (**)$ mà $(7,11)=1$ nên $A\vdots 77$ (đpcm)

29 tháng 3 2020

36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77

10 tháng 7 2017

Ta có :

\(36^{38}=\left(7.5+1\right)^{38}\) đồng dư với 1 (mod 7)

\(41^{43}=\left(7.6-1\right)^{43}\)đồng dư với - 1(mod 7)

\(\Rightarrow36^{38}+41^{43}\)đồng dư với 0 (mod 7)

Hay \(36^{38}+41^{43}\) chia hết cho 7 (1)

Ta cũng có :

\(36^{38}=\left(3.11+3\right)^{38}\) đồng dư với \(3^{38}\) (mod 11)

\(41^{43}=\left(44-3\right)^{43}\) đồng dư với \(-3^{43}\) (mod 11)

\(\Rightarrow36^{38}+41^{43}\)đồng dư với \(3^{38}-3^{43}\) (mod 11)

Ta thấy : \(3^{38}-3^{43}=3^{38}\left(1-3^5\right)=3^{38}.\left(-242\right)=3^{38}.11.\left(-22\right)⋮11\)

\(\Rightarrow36^{38}+41^{43}\) chia hết cho 11 (2)

Mà (7;11) = 1 Nên từ (1) ; (2) => \(36^{38}+41^{43}⋮77\) (đpcm)