Cho biểu thức :M = 35+36+37+38+39+310. Chứng minh rằng M chia hết cho 91
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)
S = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39
S = ( 3 + 32 + 33 ) +34 + 35 + 36 + 37 + 38 + 39
S = 39 + 34 + 35 + 36 + 37 + 38 + 39
Vì 39 ⋮ -39
<=> S ⋮ -39
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
M=3^5+3^6+3^7+3^8+3^9+3^10
= ( 3^5 + 3^7 + 3^9 ) + ( 3^6 + 3^8 + 3^10 )
= 3^5 x ( 1 + 3^2 + 3^4 ) + 3^6 x ( 1 + 3^2 + 3^4 )
= 3^5 x 91 + 3^6 x 91 = 91 x ( 3^5 + 3^6 ) chia hết cho 91
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)
Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)
nên \(B\vdots4\).
`#3107.101107`
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)
\(=4\left(3+3^3+3^5+3^7\right)\)
Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$
`\Rightarrow B \vdots 4`
Vậy, `B \vdots 4.`
\(M=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+.....+\frac{1}{37\cdot38}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)
\(=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{37}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{38}\right)\)
\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{38}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{38}\right)\)
\(=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{38}\)
\(N=\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)
\(\Rightarrow58N=\frac{1}{20}+\frac{1}{38}+\frac{1}{21}+\frac{1}{37}+...+\frac{1}{37}+\frac{1}{20}\)
\(=2\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{38}\right)\)
\(=2A\)
\(\Rightarrow N=\frac{2}{58}M\)
\(\Rightarrow\frac{M}{N}=29\)là số nguyên.
M = (3^5+3^7+3^9)+(3^6+3^8+3^10)
= 3^5.(1+3^2+3^4)+3^6.(1+3^2+3^4)
= 3^5.91 + 3^6.91 = 91.(3^5+3^6) chia hết cho 91