Xét sự biến thiên của hàm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=2\left(cos2x+sinx-1\right)=2\left(-2sin^2x+sinx\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Hàm đồng biến trên các khoảng: \(\left(k2\pi;\dfrac{\pi}{6}+k2\pi\right)\) ; \(\left(\dfrac{5\pi}{6}+k2\pi;\pi+k2\pi\right)\)
Hàm nghịch biến trên các khoảng: \(\left(\dfrac{\pi}{6}+k2\pi;\dfrac{5\pi}{6}+k2\pi\right)\) ; \(\left(-\pi+k2\pi;k2\pi\right)\)
a) y = 4 x 3 + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R
Bảng biến thiên:
Đồ thị:
b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12 x 0 2 + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1
Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8
c) Vì y’ = 12 x 2 + m nên m ≥ 0; y” = –6( m 2 + 5m)x + 12m
+) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).
Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6( m 2 + 5m)x + 12m
+) Với m < 0 thì y = 0 ⇔
Từ đó suy ra:
y’ > 0 với
y’ < 0 với
Vậy hàm số (1) đồng biến trên các khoảng
và nghịch biến trên khoảng
Đáp án A
Ta có y = sin x - cos x = 2 sin x - π 4
Từ đây ta có thể loại đáp án C, do tập giá trị của hàm số là - 2 ; 2
Hàm số đã cho tuần hoàn với chu kỳ 2π do vậy ta xét sự biến thiên của hàm số trên đoạn (-π/4; 7π/4)
Ta có:
* Hàm số đồng biến trên khoảng (-π/4; 3π/4)
* Hàm số nghịch biến trên khoảng (3π/4; 7π/4)