K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

Đặt x+1/x = a 

=> x^2+1/x^2 = a^2-2

pt trở thành : a = a^2-2

<=> a^2-a-2 = 0

<=> (a^2+a)-(2a+2) = 0

<=> (a+1).(a-2) = 0

<=> a+1=0 hoặc a-2=0

<=> a=-1 hoặc a=2

<=> x+1/x = -1 hoặc x+1/x = 2

Đến đó bạn tự giải nha

Tk mk nha

7 tháng 8 2020

Bài làm:

PT:

đkxđ: \(x\ne0;x\ne2\)

Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x=2+x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)

BPT:

Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)

\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)

\(\Leftrightarrow\frac{-x}{2}\le0\)

\(\Rightarrow-x\le0\)

\(\Rightarrow x\ge0\)

7 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)

Vậy \(S=\left\{-1\right\}\)

b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow x+1-2x-1\le0\)

\(\Leftrightarrow-x\le0\)

\(\Leftrightarrow x\ge0\)

Vậy \(x\ge0\)

22 tháng 2 2019

Điều kiện: x khác 0

Đặt \(\frac{x^2+1}{x}=t\Rightarrow\frac{x}{x^2+1}=\frac{1}{t}\)

Khi đó: \(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)

\(\Leftrightarrow t+\frac{1}{t}=\frac{5}{2}\)

\(\Leftrightarrow\frac{t^2+1}{t}=\frac{5}{2}\Rightarrow2t^2+2=5t\)

\(\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\left(2t-1\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\t=2\end{cases}}\)

Nếu \(t=\frac{1}{2}\Rightarrow\frac{x^2+1}{x}=\frac{1}{2}\Rightarrow2x^2+2=x\)

\(\Leftrightarrow2x^2-x+2=0\)

Mà \(2x^2-x+2=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\forall x\)

Nên \(x\in\varnothing\)

Nếu \(t=2\Rightarrow\frac{x^2+1}{x}=2\Rightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)(thỏa mãn ĐKXĐ)

Tập nghiệm của pt: \(S=\left\{1\right\}\)

\(\)

23 tháng 2 2019

Theo BĐT AM-GM,ta có: \(x^2+1\ge2\left|x\right|\ge2x\Rightarrow\frac{x^2+1}{x}\ge2\)

Đặt \(\frac{x^2+t}{x}=t\left(t\ge2\right)\).Bài toán trở thành:

\(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow\left(\frac{1}{t}+\frac{t}{4}\right)+\frac{3t}{4}=\frac{5}{2}\)

Áp dụng BĐT AM-GM: \(VT\ge1+\frac{3t}{4}\ge1+\frac{6}{4}=\frac{5}{2}\)

Mà \(VT=\frac{5}{2}\) .Dấu "=" xảy ra khi \(\frac{1}{t}=\frac{t}{4}\Leftrightarrow t=2\Leftrightarrow\frac{x^2+1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x=1\)

Vậy tập hợp nghiệm của phương trình: \(S=\left\{1\right\}\)

16 tháng 7 2016

ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)

\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)

\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)

\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)

\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)

mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)

=> 2x + 7 = 0 => x = -7/2 

                                                                              Vậy x = -7/2

2 tháng 3 2019

ĐKXĐ: x khác 0

\(x+\frac{1}{x}=x^2+\frac{1}{x^2}\Leftrightarrow\frac{x^3+x}{x^2}=\frac{x^4+1}{x^2}\)

=>x3+x=x4+1

<=>x4-x3-x+1=0

<=>x3(x-1)-(x-1)=0

<=>(x-1)(x3-1)=0

<=>(x-1)2(x2+x+1)=0

Mà \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

=>x-1=0 <=> x=1 (tmđk)

vậy pt có tập nghiệm là S={1}

19 tháng 3 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne1,\text{ }x\ne-2\).

\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(\text{-}x\right)\)

\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=\frac{x\left(x-1\right)}{x-1}+\left(\text{-}x\right)\)

\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=x+\left(\text{-}x\right)\)

\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=0\)

\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}=0\)

\(\Rightarrow2\left(x+2\right)+\left(x-1\right)=0\)

\(\Leftrightarrow2x+4+x-1\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3x=\text{-3}\Leftrightarrow x=\text{-1}\)

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1\right\}\).

24 tháng 5 2020

\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(-x\right)\left(đk:x\ne1;-2\right)\)

\(\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x\left(x-1\right)}{x-1}-x\)

\(< =>\frac{2x+4+x-1}{\left(x-1\right)\left(x+2\right)}=x-x=0\)

\(< =>2x+4+x-1=0\)

\(< =>3x=1-4=-3\)

\(< =>x=\frac{-3}{3}=-1\left(tmđk\right)\)

Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)

9 tháng 6 2016

Ta có: \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)

=>\(\frac{2-x}{2007}=\frac{1-x}{2008}-\frac{x}{2009}+1\)

=>\(\frac{2-x}{2007}=\left(\frac{1-x}{2008}+1\right)-\frac{x}{2009}+1-1\)

=>\(\frac{2-x}{2007}+1=\frac{1-x+2008}{2008}+\left(1-\frac{x}{2009}\right)\)

=>\(\frac{2-x+2007}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)

=>\(\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)

=>\(\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)

=>\(\left(2009-x\right).\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

=>2009-x=-

=>x=2009

Vậy tập nghiệm của phương trình S=2009

9 tháng 6 2016

Lê Chí Cường nhầm đoạn cuối rồi kìa

8 tháng 4 2019

\(\frac{1}{2-x}+1=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)ĐKXĐ : \(x\ne\pm2\)

\(\Leftrightarrow\frac{-3\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{-3x-6+3\left(x^2-4\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x-6+x-6}{3\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{-3x-6+3x^2-12-3x+6-x+6}{3\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{-7x-6+3x^2}{3\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow3x^2-7x-6=0\)

\(\Leftrightarrow3x^2-9x+2x-6=0\)

\(\Leftrightarrow3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-2}{3}\end{cases}}\)( thỏa mãn )

Vậy....