K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

   20+21-22+23-24+....+22018

=1+(21-22)+(23-24)+...+(22017-22018)

=1+(-2)+(-2)+.....+(-2)            ngoặc ở dưới có 1009 số (-2) nha

=1+(-2).1009

=1+(-2018)

=-2017

nhớ kick nha

31 tháng 1 2018

Đặt     \(A=2^0+2^1+2^2+2^3+2^4+....+2^{2018}\)

\(\Rightarrow\)\(2A=2^1+2^2+2^3+2^4+2^5+.....+2^{2019}\)

\(\Rightarrow\)\(2A-A=\left(2^1+2^2+2^3+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2018}\right)\)

\(\Rightarrow\)\(A=2^{2019}-1\)

30 tháng 12 2019

đặt A=1+4+4^2+4^3+...+4^2018

    B=1+2+2^2+2^3+...+2^2018

A=1+4+4^2+4^3+...+4^2018

4A=4+4^2+4^3+...+4^2019

4A-A=(4+4^2+4^3+...+4^2019)-(1+4+4^2+4^3+...+4^2018)

3A=4^2019-1

A=(4^2019)/3

B=1+2+2^2+2^3+...+2^2018

2B=2+2^2+2^3+...+2^2019

2B-B=(2+2^2+2^3+...+2^2019)-(1+2+2^2+2^3+...+2^2018)

B=2^2019-1

=>(1+4+4^2+4^3+...+4^2018)/(1+2+2^2+2^3+...+2^2018) =A/B=(4^2019-1)/3/(2^2019-1)

=(4^2019-1)/(3.2^2019-3)

Vậy ...............................

2 tháng 2 2018

Đặt \(A=2^0+2^1+2^2+2^3+....+2^{2018}\)

Nên \(2A=2^1+2^2+2^3+2^4+....+2^{2019}\)

Do đó \(2A-A=2^{2018}-2^0\)hay \(A=2^{2018}-1\)

Vậy giá trị biểu thức là \(2^{2018}-1\)

11 tháng 2 2019

A = (-1)(-1)^2(-1)^3...(-1)^2019

A = (-1)^1+2+3+...+2019

A = (-1)^2039190

A = 1

S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4

4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)

4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019

4S = 2018.2019.2020.2021

S = 2018.2019.2020.2021 : 4 = ...

cảm ơn bạn nhiều nhé

31 tháng 1 2018

\(2^0-2^1+2^2-2^3+...........+2^{2018}\)

đặt \(A=2^0-2^1+2^2-2^3+.....+2^{2018}\)

\(2A=2^1-2^2+2^3-2^4+.......+2^{2019}\)

\(2A+A=2^1-2^2+2^3-2^4+.....+2^{2019}+\left(2^0-2^1+2^2-2^3+....+2^{2018}\right)\)

\(3A=2^1-2^2+2^3-2^4+....+2^{2019}+2^0-2^1+2^2-2^3+....+2^{2019}\)

\(3A=2^0+2^{2019}\)

\(3A=1+2^{2019}\)

\(A=\frac{1+2^{2019}}{3}\)

1 tháng 2 2018

CẢM ƠN BẠN ĐÃ GIÚP MÌNH GIẢI BÀI NÀY

27 tháng 11 2019

Ta có : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

\(=>\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)

\(=>\left(a+b+2\right)\left[\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right]+\left(a+b+2\right)=0\)

\(=>\left(a+b+2\right)\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)2\left(a^2+b^2+a+b-ab+2\right)=0\)

\(=>\left(a+b+2\right)\left(2a^2+2b^2+2a+2b-2ab+4\right)=0\)

\(=>\left(a+b+2\right)\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\right]=0\)

Lại có : \(\left(a-b\right)^2\ge0;\left(a+1\right)^2\ge0;\left(b+1\right)^2\ge0\)

\(=>\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\ge0\)

\(=>a+b+2=0=>a+b=-2=>M=2018.\left(-2\right)^2=8072\)