Tính 2^0+2^1+2^2+2^2+2^4+......+2^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1+4+4^2+4^3+...+4^2018
B=1+2+2^2+2^3+...+2^2018
A=1+4+4^2+4^3+...+4^2018
4A=4+4^2+4^3+...+4^2019
4A-A=(4+4^2+4^3+...+4^2019)-(1+4+4^2+4^3+...+4^2018)
3A=4^2019-1
A=(4^2019)/3
B=1+2+2^2+2^3+...+2^2018
2B=2+2^2+2^3+...+2^2019
2B-B=(2+2^2+2^3+...+2^2019)-(1+2+2^2+2^3+...+2^2018)
B=2^2019-1
=>(1+4+4^2+4^3+...+4^2018)/(1+2+2^2+2^3+...+2^2018) =A/B=(4^2019-1)/3/(2^2019-1)
=(4^2019-1)/(3.2^2019-3)
Vậy ...............................
Đặt biểu thức đã cho là A
Đặt \(B=2^{2019}+2^{2018}+.......+2^1+2^0\)
\(\Rightarrow2B=2^{2020}+2^{2019}+.......+2^2+2\)
\(\Rightarrow2B-B=B=2^{2020}-2^0\)
\(\Rightarrow A=2^{2020}-\left(2^{2020}-2^0\right)=2^{2020}-2^{2020}+1=1\)
\(A=2^{2018}-2^{2017}-2^{2016}-.....-2^1-2^0\)
\(\Rightarrow-A=2^{2018}+2^{2017}+2^{2017}+.....+2^1+2^0\)
\(\Rightarrow-A=2^0+2^1+2^2+......+2^{2017}+2^{2018}\)
\(\Rightarrow2\left(-A\right)=2+2^2+2^3+......+2^{2018}+2^{2019}\)
\(\Rightarrow2\left(-A\right)-\left(-A\right)=-A=2^{2019}-2^0\)
\(\Rightarrow A=-\left(2^{2019}-1\right)=-2^{2019}+1=1-2^{2019}\)
Ta có: \(A=2^0+2^1+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2^1+2^2+2^3+2^4+....+2^{2019}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{2019}\right)-\left(2^0+2^1+2^2+...+2^{2018}\right)\)
\(\Rightarrow A=2^{2019}-2^0=2^{2019}-1\)
Vậy ...
\(A=2^0+2^1+...+2^{2018}\)
\(\Rightarrow2A=2^1+2^2+...+2^{2019}\)
\(\Rightarrow2A-A=\left(2^1+2^2+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2018}\right)\)
\(\Rightarrow A=2^{2019}-1\)
Đặt \(A=2^0+2^1+2^2+2^3+....+2^{2018}\)
Nên \(2A=2^1+2^2+2^3+2^4+....+2^{2019}\)
Do đó \(2A-A=2^{2018}-2^0\)hay \(A=2^{2018}-1\)
Vậy giá trị biểu thức là \(2^{2018}-1\)
\(2^0-2^1+2^2-2^3+...........+2^{2018}\)
đặt \(A=2^0-2^1+2^2-2^3+.....+2^{2018}\)
\(2A=2^1-2^2+2^3-2^4+.......+2^{2019}\)
\(2A+A=2^1-2^2+2^3-2^4+.....+2^{2019}+\left(2^0-2^1+2^2-2^3+....+2^{2018}\right)\)
\(3A=2^1-2^2+2^3-2^4+....+2^{2019}+2^0-2^1+2^2-2^3+....+2^{2019}\)
\(3A=2^0+2^{2019}\)
\(3A=1+2^{2019}\)
\(A=\frac{1+2^{2019}}{3}\)
Đặt \(A=2^0+2^1+2^2+2^3+2^4+....+2^{2018}\)
\(\Rightarrow\)\(2A=2^1+2^2+2^3+2^4+2^5+.....+2^{2019}\)
\(\Rightarrow\)\(2A-A=\left(2^1+2^2+2^3+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2018}\right)\)
\(\Rightarrow\)\(A=2^{2019}-1\)