tìm giá trị nhỏ nhất của
- Q= /x-1/ + /y-2/ + /z-3/ với /x/ + /y/ + /z/ = 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t lắm tắt luôn nhé có nhiều câu quá
áp dụng bdt cô si ta có
a) \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)
vậy Min của T là 4 dấu = xảy ra khi x=y=z=1
b)
áp dụng BDT cosi ta có
\(x+y+Z\ge3\sqrt[3]{xyz}\)
\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)
+ vế với vế ta được
\(T+3xyz\ge3\sqrt[3]{xyz}+6\)
\(T\ge3\sqrt[3]{xyz}+6-3xyz\)
có \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được
\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)
Có \(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\) (cosy)
+ vế với vế ta được
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được
\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)
\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1
3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)
thử thay vào
\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)
số xấu lắm m tự làm đi tương tự câu 1) 2)
1) dự đoán của chúa Pain x=y=z=1
áp dụng BDT cô si ta có
\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)
Vậy Min là 4 dấu = xảy ra khi x=y=z=1
2 chia cả tử cả mẫu cho \(x^2+y^2+z^2=3\) ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)
thay số ta được
\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)
áp dụng Cô si ta được
\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)
vậy Min là 6 dấu = xảy ra khi x=y=z=1
3) TƯỢNG TỰ cậu 2
chia xyz cho 2 vế
\(x^2+y^2+z^2=1\)
ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)
thay số
\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
áp dụng BDT cô si ta được
\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)
tự làm
Em có cách này nhưng không chắc
Ta sẽ c/m BĐT phụ sau:\(2x+\frac{1}{x}\ge\frac{x^2}{2}+\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{2x}\le0\) (đúng) (ta chuyển hết VT sang vế phải rồi qui đồng lên)
Thiết lập hai BĐT tương tự và cộng theo vế ta tìm được Min
\(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\)
Áp dụng Côsi: \(1+y^2\ge2y\Rightarrow\frac{xy^2}{1+y^2}\le\frac{xy^2}{2y}=\frac{xy}{2}\Rightarrow-\frac{xy^2}{1+y^2}\ge-\frac{xy}{2}\)
Do đó: \(\frac{x}{1+y^2}\ge x-\frac{xy}{2}\)
Tương tự ta có: \(\frac{y}{1+z^2}\ge y-\frac{yz}{2};\frac{z}{1+x^2}\ge z-\frac{zx}{2}\)
Mà \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zy\right)\ge xy+yz+zx+2\left(xy+yz+zy\right)\)
\(\Rightarrow xy+yz+zx\le\frac{1}{3}\left(x+y+z\right)^2=3\)
\(\Rightarrow\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{2}.3=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi x = y = z = 1
Vậy GTNN của P là 1
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Q = (x-1)+(y-2)+(z-3)
Q = x-1+y-2+z-3
Q = x+y+z-3-2-1
mà x+y+z = 2018
=>Q = 2018-3-2-1
Q=2012
Vậy Q=2012