phân tích
\(\left(x+y\right)^4+x^4+y^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
\(\Rightarrow M=2a-b^2-2bc^2+c^4\)
\(M=2a-2b^2+b^2-2bc^2+c^4\)
\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Mà:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(b-c^2=-2\left(xy+yz+zx\right)\)
Khi đó:
\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)
\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)
\(M=8xyz\left(x+y+z\right)\)
nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé
\(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+\left(x^2+2xy+y^2\right)^2\)
\(=x^4+y^4+x^4+6x^2y^2+y^4+4x^3y+4xy^3\)
\(=2.\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2.\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+2x^2y^2\)
\(=2.\left[\left(x^2+y^2\right)\left(x+y\right)^2+x^2y^2\right]\)
Sai thì thôi nhé~
\(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2\left[\left(x^4+2x^3y+x^2y^2\right)+2\left(x^2+xy\right)y^2+y^4\right]\)
\(=2\left[\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+\left(y^2\right)^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\)
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+x^4+y^4+4x^3y+2x^2y^2+4xy^3\)
\(=2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)
\(=2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)
\(=2\left(x^2+xy+y^2\right)^2\)
( x+y )4 +x4 + y4 = 2.(x2+xy+y2 )2
minh khong co thoi gian lam bai nen chi viet moi dap an
thoi . Thông cảm cho mình nhé !!!