Tìm giá trị nhỏ nhất của:
\(A=\left|x+\frac{-2}{5}\right|+\frac{5}{7}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
Áp dụng cô-si \(\frac{2}{x-3}+\frac{2}{5-x}\ge2\sqrt{\frac{2}{x-3}.\frac{2}{5-x}}\)=\(\frac{4}{\sqrt{\left(x-3\right)\left(5-x\right)}}\)
A = \(\frac{5}{\sqrt{\left(x-3\right)\left(5-x\right)}}\)
Mà \(\sqrt{\left(x-3\right)\left(5-x\right)}\le\frac{x-3+5-x}{2}=1\)(theo cô-si)
\(\Rightarrow\frac{1}{\sqrt{\left(x-3\right)\left(5-x\right)}}\ge1\)
nên A\(\ge\)5
Dấu bằng xảy ra khi x-3=5-x <=> x=4 (thỏa mãn ĐK 3<x<5)
Vậy Amin =5 khi x=4
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s