Phân tích đa thức thành nhân tử: \(X^{20}+x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x20 + x + 1 = (x20 - x2) + (x2 + x + 1)
= x2(x18 - 1) + (x2 + x + 1)
= x2(x9 - 1)(x9 + 1) + (x2 + x + 1)
=(x11 + x)(x3 - 1)(x6 + x3 + 1) + (x2 + x + 1)
= (x17 + x14 + x11 + x7 + x4 + x)(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x18 + x15 + x12 + x8 + x5 + x2 - x17 - x14 - x11 - x7 - x4 - x + 1)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
\(x^2+x-20=\left(x^2+5x\right)-\left(4x+20\right)=x\left(x+5\right)-4\left(x+5\right)=\left(x+5\right)\left(x-4\right)\)
x2 + x - 20
= x2 + 5x - 4x - 20
= ( x2 + 5x ) - ( 4x + 20 )
= x( x + 5 ) - 4( x + 5 )
= ( x - 4 )( x + 5 )
\(x^2+x-20\)
\(=x^2+5x-4x-20\)
\(=x\left(x+5\right)-4\left(x+5\right)\)
\(=\left(x-4\right)\left(x+5\right)\)
\(\left(x^2-3x+2\right)\left(x^2-9x+20\right)-40=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-40\)
\(=\left(x^2-6x+5\right)\left(x^2-6x+8\right)-40\)
Đặt \(t=x^2-6x+5\) thì ta có \(t\left(t+3\right)-40=t^2+3t-40=\left(t+8\right)\left(t-5\right)\)
Suy ra \(\left(x^2-6x+5\right)\left(x^2-6x+8\right)-40=\left(x^2-6x+13\right)\left(x^2-6x\right)=x\left(x-6\right)\left(x^2-6x+13\right)\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
x20 + x +1
= x20 - x2 + x2+ x+ 1
= x2(x18 - 1) + x2+ x+ 1
= x2(x9 + 1)(x9 - 1) + x2+ x+ 1
= x2(x9 + 1)(x3 + 1)(x3 - 1) + x2+ x+ 1
= x2(x9 + 1)(x3 + 1)(x - 1)(x2+ x+ 1) + x2+ x+ 1
= [x2(x9 + 1)(x3 + 1)(x - 1) + 1](x2+ x+ 1)
Bạn vào YouTube và đăng kí kênh nha. Kênh tên là CT CATTER
CHÚC BẠN HỌC TỐT!!!!!
Tk cho mình nha