CMR\(\forall a\ge1\), ta luôn có:
\(\sqrt{a+1}-\sqrt{a-1}=\frac{1}{\sqrt{a}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2.\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}\)
\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n.\sqrt{n+1}}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng BĐT AM-GM cho các số không âm \(a-1,b-1\)(\(\left(a.b\ge1\right)\):
\(\left(a-1\right)+1\ge2\sqrt{a-1}\Rightarrow\sqrt{a-1}\le\frac{a}{2}\)\(\Leftrightarrow b\sqrt{a-1}\le\frac{ab}{2}\)
Tương tự: \(a\sqrt{b-1}\le\frac{ab}{2}\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
\(''=''\Leftrightarrow a=b=2\)
chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)
a, Ta có
\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng bđt ta có
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)
\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..
\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)
\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)
Áp dụng BĐT quen thuộc \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) :
\(\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\)(2)
Từ (1) và (2) ta có đpcm.
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)
bài tập toán cuối tuần lớp 3 , trang 4 cho các số 2 ,3 , 4, 5 .
a , hãy viết tất cả các số có 4 chữ số khác nhau , trong đó chữ số hàng nghìn là 2
b ,xếp các số theo thứ tự từ lớn đến bé
c , xếp các số theo thứ tư từ bé đến lớn
\(VT=\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}+\frac{1}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{1}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}\)
\(VT\ge\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\)
Do \(abc=8\) nên tồn tại các số dương x;y;z sao cho: \(\left\{{}\begin{matrix}a=\frac{2x}{y}\\b=\frac{2y}{z}\\c=\frac{2z}{x}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{y^2}{2x^2+y^2}+\frac{z^2}{2y^2+z^2}+\frac{x^2}{2z^2+x^2}\)
\(\Rightarrow VT\ge\frac{x^4}{x^4+2x^2z^2}+\frac{y^4}{y^4+2x^2y^2}+\frac{z^4}{z^4+2y^2z^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=2\)
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###