tìm x,y thuộc z biết y(x-1)=x^2+2 (chú ý x^2 -1=(x-1)(x+1))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x-1|;|y+2|;|z+3| đều >= 0
=> VT >=0 = VP
Dấu "=" xảy ra <=> x-1=0;y+2=0 và z-3=0
<=> x=1;y=-2 và z=-3
Vậy x=1;y=-2 và z=3
k mk nha
\(a, \left(x^2+3\right)\left(3x-6\right)\)
\(\Rightarrow\orbr{\begin{cases}x^2+3=0\\3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=-3\\3x=6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=2\end{cases}}\)
\(B=\frac{1^2}{x}+\frac{\left(\sqrt{2}\right)^2}{y}+\frac{2^2}{z}\ge\frac{\left(1+\sqrt{2}+2\right)^2}{x+y+z}=\frac{\left(3+\sqrt{2}\right)^2}{1}=\left(3+\sqrt{2}\right)^2\)
Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{\sqrt{2}}{y}=\frac{2}{z}=\frac{1+\sqrt{2}+2}{x+y+z}=\frac{3+\sqrt{2}}{1}\)
<=> \(x=\frac{1}{3+\sqrt{2}};y=\frac{\sqrt{2}}{3+\sqrt{2}};z=\frac{2}{3+\sqrt{2}}\).
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)