Rút gọn: (x^4 - 5x^2 + 4) / (x^4 - 10x^2 + 9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^4-5x^2+4}{x^4-10^2+9}=\frac{x^2\left(x^2-5+4\right)}{x^2\left(x^2-10+9\right)}\)
\(=\frac{x^2-1}{x^2-1}=1\)
1)
\(ĐKXĐ:x\ne-1\)
\(\dfrac{x^2+2x+1}{x+1}\\ =\dfrac{\left(x+1\right)^2}{x+1}\\ =x+1\)
2)
ĐKXĐ x khác 0 và x khác 3
\(\dfrac{x^2-6x+9}{x\left(x-3\right)}\\ =\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}\\ =\dfrac{x-3}{x}\)
3)
ĐKXĐ: x khác 0 và x khác -2
\(\dfrac{x^2-4}{2x\left(x+2\right)}\\ =\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}\\ =\dfrac{x-2}{2x}\)
4)
DKXĐ: x khác 0 và x khác 2
\(\dfrac{x^2-2x}{5x^2-10x}\\ =\dfrac{x\left(x-2\right)}{5x\left(x-2\right)}\\ =\dfrac{1}{5}\)
`1)` Biểu thức xác định `<=>x+1 \ne 0<=>x \ne -1`
`[x^2+2x+1]/[x+1]=[(x+1)^2]/[x+1]=x+1`
`2)` Bth xác định `<=>x(x-3) \ne 0<=>{(x \ne 0),(x \ne 3):}`
`[x^2-6x+9]/[x(x-3)]=[(x-3)^]/[x(x-3)]=[x-3]/x`
`3)` Bth xác định `<=>2x(x+2) \ne 0<=>{(x \ne 0),(x \ne -2):}`
`[x^2-4]/[2x(x+2)]=[(x-2)(x+2)]/[2x(x+2)]=[x-2]/[2x]`
`4)` Bth xác định `<=>5x^2-10x \ne 0<=>5x(x-2) \ne 0<=>{(x \ne 0),(x \ne 2):}`
`[x^2-2x]/[5x^2-10x]=[x(x-2)]/[5x(x-2)]=1/5`
\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\left(\frac{\left(5x+2\right)\left(x+10\right)+\left(5x-2\right)\left(x-10\right)}{x\left(x^2-100\right)}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{10\left(x^2+4\right)}{x\left(x^2-100\right)}.\frac{x^2-100}{x^2+4}=\frac{10}{x}\)
Với \(x=20040\)
\(\Rightarrow A=\frac{10}{20040}=\frac{1}{2004}\)
\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}\)
\(=\dfrac{x^2.\left(x^2-1\right)-4.\left(x^2-1\right)}{x^2.\left(x^2-1\right)-9.\left(x^2-1\right)}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)
\(=\dfrac{x^2-4}{x^2-9}\)
Chúc bạn học tốt!!!
\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
\(=\dfrac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}\)
\(=\dfrac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
Lời giải:
a. ĐKXĐ: $x\neq \pm 1; \pm 3$
$A=\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{(x-1)(x+1)(x-2)(x+2)}{(x-1)(x+1)(x-3)(x+3)}$
$=\frac{(x-2)(x+2)}{(x-3)(x+3)}=\frac{x^2-4}{x^2-9}$
b.
Để $A=0$ thì $x^2-4=0$
$\Leftrightarrow (x-2)(x+2)=0$
$\Leftrightarrow x=\pm 2$ (thỏa mãn)
c.
$|2x-1|=7$
$\Rightarrow 2x-1=7$ hoặc $2x-1=-7$
$\Rightarrow x=4$ hoặc $x=-3$.
Mà $x\neq \pm 1; \pm 3$ nên $x=4$
Khi đó:
$A=\frac{4^2-4}{4^2-9}=\frac{12}{7}$
a) \(\frac{x^2+2x+4}{4x^3-32}=\frac{x^2+2x+4}{4\left(x^3-8\right)}=\frac{x^2+2x+4}{4\left(x-2\right)\left(x^2+2x+4\right)}=\frac{1}{4\left(x-2\right)}.\)
b) \(\frac{10x-15}{4x^2-9}=\frac{5\left(2x-3\right)}{\left(2x\right)^2-3^2}=\frac{5\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}=\frac{5}{2x+3}.\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HAND!!!!
\(\frac{x^2+2x+4}{4x^3-32}=\frac{\left(x+2\right)^2}{4\left(x^3-8\right)}=\frac{\left(x+2\right)^2}{4\left(x-2\right)\left(x^2+2x+4\right)}=\frac{x+2}{4\left(x^2+2x+4\right)}.\)
\(\frac{10x-15}{4x^2-9}=\frac{5\left(2x-3\right)}{\left(2x\right)^2-3^2}=\frac{5\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}=\frac{5}{2x+3}\)
\(P=\dfrac{15x^5y^3-10x^3y^2+20x^4y^4}{5x^2y^2}\)
\(=\dfrac{15x^5y^3}{5x^2y^2}-\dfrac{10x^3y^2}{5x^2y^2}+\dfrac{20x^4y^4}{5x^2y^2}\)
\(=3x^3y-2x+4x^2y^2\)
Khi x=-1 và y=2 thì \(P=3\cdot\left(-1\right)^3\cdot2-2\cdot\left(-1\right)+4\cdot\left(-1\right)^2\cdot2^2\)
\(=-6+2+16=4+16=20\)
a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..
\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)
\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)
\(=3x^4+10x^2+9.\)
\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)
\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)
\(=x^4-8x^2-8\)
b. Tính M = A(x) + B(x) ; N = A(x) - B(x)
\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)
\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)
\(=4x^4+2x^2+2\)
\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)
\(=3x^4+10x^2+9-x^4+8x^2+8\)
\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)
\(=2x^4+18x^2+17\)
\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\) \(ĐKXĐ:x\ne\pm3\)
\(=\frac{x^4-4x^2-x^2+4}{x^4-9x^2-x^2+9}\)
\(=\frac{\left(x^4-4x^2\right)-\left(x^2-4\right)}{\left(x^4-9x^2\right)-\left(x^2-9\right)}\)
\(=\frac{x^2.\left(x^2-4\right)-\left(x^2-4\right)}{x^2.\left(x^2-9\right)-\left(x^2-9\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)
\(=\frac{x^2-4}{x^2-9}\)
\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2.\left(x^2-1\right)-4.\left(x^2-1\right)}{x^2.\left(x^2-1\right)-9.\left(x^2-1\right)}\)
\(=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\frac{x^2-4}{x^2-9}\)