K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

biến thành pt ước

x(y+3)-5(y+3)=-18

<=>(y+3)(x-5)=-18

8 tháng 1 2018

a)

Tìm nghiệm nguyên dương của phương trình,6x + 5y + 18 = 2xy,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Nhận thấy: x phải là số lẻ. Vì nếu x là số chẵn thì 3x^2 sẽ là số chẵn => 3x^2-4y^2 là số chẵn trong khi 13 là số lẻ 

x là số lẻ => x có dạng x= 2k+1 với k thuộc Z 
thay x=2k+1 vào phương trình ta có: 
3(4k^2+4k+1) - 4y^2 = 13 
<=> 6k^2+6k-2y^2=5 
<=> 6k(k+1) = 5+2y^2 

Dễ thấy vế trái là số chẵn trong khi vế phải là số lẻ => phương trình không có nghiệm nguyên => dpcm

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:

$xy+3x-5y=3$

$x(y+3)-5(y+3)=-12$

$(x-5)(y+3)=-12$

Với $x,y$ nguyên thì $x-5, y+3$ cũng là số nguyên. Mà tích của chúng bằng -12 nên ta xét các TH sau:

TH1: $x-5=1, y+3=-12\Rightarrow x=6; y=-15$

TH2: $x-5=-1, y+3=12\Rightarrow x=4; y=9$

TH3: $x-5=2, y+3=-6\Rightarrow x=7; y=-9$

TH4: $x-5=-2, y+3=6\Rightarrow x=3; y=3$

TH5: $x-5=3, y+3=-4\Rightarrow x=8; y=-7$

TH6: $x-5=-3, y+3=4\Rightarrow x=2; y=1$

TH7: $x-5=4, y+3=-3\Rightarrow x=9; y=-6$

TH8: $x-5=-4, y+3=3\Rightarrow x=1; y=0$

TH9: $x-5=6, y+3=-2\Rightarrow x=11; y=-5$

TH10: $x-5=-6, y+3=2\Rightarrow x=-1; y=-1$
TH11: $x-5=12, y+3=-1\Rightarrow x=17; y=-4$

TH12: $x-5=-12, y+3=1\Rightarrow x=-7, y=-2$

15 tháng 6 2019

\(a,\)\(xy+3x+2y=6\)

\(\Rightarrow xy+3x+2y+6=6+6\)

\(\Rightarrow x\left(y+3\right)+2\left(y+3\right)=12\)

\(\Rightarrow\left(y+3\right)\left(y+2\right)=12\)

\(TH1\):\(\orbr{\begin{cases}y+3=1\\x+2=12\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=10\end{cases}}}\)

\(TH2\)\(\orbr{\begin{cases}y+3=-1\\x+2=-12\end{cases}\Rightarrow\orbr{\begin{cases}y=-4\\x=-14\end{cases}}}\)

\(TH3\)\(\orbr{\begin{cases}y+3=12\\x+2=1\end{cases}\Rightarrow\orbr{\begin{cases}y=9\\x=-1\end{cases}}}\)

\(TH4\)\(\orbr{\begin{cases}y+3=-12\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-15\\x=-3\end{cases}}}\)

\(TH5\)\(\orbr{\begin{cases}y+3=2\\x+2=6\end{cases}\Rightarrow\orbr{\begin{cases}y=-1\\x=4\end{cases}}}\)

\(TH6\)\(\orbr{\begin{cases}y+3=6\\x+2=2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

\(TH7\)\(\orbr{\begin{cases}y+3=-2\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}y=-5\\x=-8\end{cases}}}\)

\(TH8\)\(:\)\(\orbr{\begin{cases}y+3=-6\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-9\\x=-4\end{cases}}}\)

\(TH9\)\(\orbr{\begin{cases}y+3=3\\x+2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=2\end{cases}}}\)

\(TH10\)\(\orbr{\begin{cases}y+3=4\\x+2=3\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=1\end{cases}}}\)

\(TH11\)\(\orbr{\begin{cases}y+3=-3\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}y=-6\\x=-6\end{cases}}}\)

\(TH12\)\(\orbr{\begin{cases}y+3=-4\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=-7\\x=-5\end{cases}}}\)

KL...

15 tháng 6 2019

chưa thấy bạn nào làm bài 3 , thì em làm ạ :))

Giả sử x, y là các số nguyên thoă mãn phương trình đã cho .

\(4x+5y=2012\Leftrightarrow5y=2012-4y\Leftrightarrow5y=4\left(503-y\right).\)(1)

Dễ thấy vế phải của (1) chia hết cho 4 \(\Rightarrow5y⋮4\)mà (5;4)=1 nên y chia hết cho 4.

Đặt \(y=4t\left(t\in Z\right)\)thế vào phương trình đầu ta được : \(4x+20t=2012\Leftrightarrow\hept{\begin{cases}x=503-5t\\y=4t\end{cases}.}\)(*)

Thử thay vào các biểu thức của x, y ở (*) ta thấy thỏa mãn 

Vậy phương trình có vô số nghiệm \(\left(x;y\right)=\left(503-5t;4t\right)\forall t\in Z.\)

16 tháng 12 2019

Ta có : xy-45=35-5y

<=> xy+5y= 35+45

<=> y(x+5) = 80

*Nếu x= -5 thì ta có y( -5 +5 ) = 80

<=> 0=80( Vô nghiệm)

Suy ra :  x khác -5 

=> x+5 khác 0

Ta có : y(x+5) = 80

\(\Leftrightarrow\) \(y=\frac{80}{x+5}\)

Mà \(y\in Z\)nên \(\frac{80}{x+5}\in Z\)

\(\Leftrightarrow80⋮x+5\)\(\Leftrightarrow x+5\inƯ\left(80\right)\)

\(\Leftrightarrow x+5\in\hept{ }-80;-40;-20;-16;-10;-8;-5;-4;-2;-1;1;2;4;5;8;10;16;20;40;80\)

Bạn giải x ra , sau đó tìm ra y , chứ dài qua mình không ghi trên này được @@

9 tháng 8 2023

Biện pháp tu từ được sử dụng trong câu "sương vô tình đậu trên mắt rưng rưng" là sự lặp lại âm tiết "rưng rưng". Tác dụng của biện pháp này là tạo ra hiệu ứng âm thanh đặc biệt, tăng cường tính hài hòa và nhấn mạnh sự mơ hồ, mờ ảo của cảnh tượng mà câu muốn diễn tả. Ngoài ra, biện pháp tu từ còn giúp tạo ra sự nhấn mạnh, tăng cường tính cảm xúc và sự chú ý của người đọc đối với câu. có đúng khum thì ko bít nữa nhớ tick ạ

9 tháng 8 2023

nhầm bài r bạn