K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow\left(x-y\right)x+\left(x-y\right)y\)

\(\Leftrightarrow x^2-xy+xy-y^2\)

\(\Leftrightarrow x^2-y^2\)

P/s tham khảo nha

17 tháng 1 2018

( x- y)( x+ y)=( x- y). x+ ( x- y). y= x2- yx+ xy- y2= x2-( yx+ xy)- y2= x2- 2xy- y2.

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

A=a.5-ab+ba-b.5-5a-3b=-8b

6 tháng 8 2019

Giá trị của đa thức sau khi bỏ dấu ngoặc tại x = 1 

\(\Leftrightarrow A_{\left(1\right)}=\left(3-4.1+1^2\right)^{2004}\left(3-4.1+1^2\right)^{2005}=0\)

6 tháng 8 2019

Tổng các hệ số của đa thức A(x) nhân được sau khi bỏ dấu ngoặc chính bằng A(1).

Ta có: \(A\left(1\right)=0^{2004}.8^{2005}\)

\(\Leftrightarrow A\left(1\right)=0\)

Chúc bạn học tốt ! truongthienvuong

8 tháng 7 2019

voi moi gt cua x va y thi gt bt c la so am hay duong

8 tháng 7 2019

\(C=x\left(x-y\right)+y\left(x+y\right)+-\left(x-y\right)\left(x+y\right)-2y^2\)

\(C=x^2-xy+xy+y^2-x^2+y^2-2y^2\)

\(C=0\)

C ko lak số âm hay số dương:V

2 tháng 10 2018

1)a)=>x2+y2+2xy-4(x2-y2-2xy)

=>x2+y2+2xy-4.x2+4y2+8xy

=>-3.x2+5y2+10xy

10 tháng 1 2021

\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)

Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)

Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )

=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)

=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)

Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)

=> P ≥ 4/9

Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3

25 tháng 5 2017

a, khi y = 4,91, ta có:

x=13,8:[5,6-4,91]

x=13,8:0,69

x=20

b, khi x= 4 ta co:

4=13,8:[5,6-y]

13,8:4= 5,6-y

3,45=5,6-y

5,6-3,45=y

2,15=y

còn câu c hình như chả đúng lắm

26 tháng 5 2017

ai giúp tớ tớ cho một k