K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

toán lớp mấy vậy bạn ?

16 tháng 1 2018

GTNN của B = 7(vì (x-1)2 = 0

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

29 tháng 1 2017

Bài 1:

Ta có: \(-\left|2x+6\right|\le0\)

\(\Rightarrow9-\left|2x+6\right|\le9\)

\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)

Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)

Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\Rightarrow\left|2x+6\right|-3\ge-3\)

\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)

Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)

Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)

2:

a: =-(x^2-12x-20)

=-(x^2-12x+36-56)

=-(x-6)^2+56<=56

Dấu = xảy ra khi x=6

b: =-(x^2+6x-7)

=-(x^2+6x+9-16)

=-(x+3)^2+16<=16

Dấu = xảy ra khi x=-3

c: =-(x^2-x-1)

=-(x^2-x+1/4-5/4)

=-(x-1/2)^2+5/4<=5/4

Dấu = xảy ra khi x=1/2

27 tháng 7 2023

1) 

a) \(A=x^2+4x+17\)

\(A=x^2+4x+4+13\)

\(A=\left(x+2\right)^2+13\) 

Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)

Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)

Vậy: \(A_{min}=13\) khi \(x=-2\)

b) \(B=x^2-8x+100\)

\(B=x^2-8x+16+84\)

\(B=\left(x-4\right)^2+84\)

Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)

Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)

Vậy: \(B_{min}=84\) khi \(x=4\)

c) \(C=x^2+x+5\)

\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

NV
26 tháng 7 2021

Câu này em đã hỏi rồi

1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2    với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14  : x2 -2x +1  với x≠ 1gi... - Hoc24