Tìm \(x\in Z\)
\(x^3=-8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-1/9 = 8/3
=> (x-1).3 = 9.8
=> (x-1).3 = 72
x-1 = 72:3
x-1 = 24
x = 24+1
=> x = 25
\(\frac{x-1}{9}=\frac{8}{3}\Rightarrow\frac{x-1}{9}=\frac{24}{9}\)\(\Leftrightarrow x-1=24\Rightarrow x=24+1=25\)
Vậy x=25
Ta có :
\(\frac{x^3}{8}\)= \(\frac{y^3}{64}\)= \(\frac{z^3}{216}\) \(\Rightarrow\)\(\frac{x^3}{2^3}\)= \(\frac{y^3}{4^3}\)= \(\frac{z^3}{6^3}\)\(\Rightarrow\)\(\frac{x^2}{2^2}\)=\(\frac{y^2}{4^2}\)=\(\frac{z^2}{6^2}\)
và có : \(^{x^2+y^2+z^2=224}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{224}{56}=4\)
=> \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x\in4;-4\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y\in8:-8\)
\(\frac{z^2}{36}=4\Rightarrow z^2=144\Rightarrow z\in12:-12\)
Vì \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)nên x,y,z cùng dấu
Vậy \(x,y,z\in\left(4;8;12\right);\left(-4;-8;-12\right)\)
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
Ta có: \(0\le\left|x-3\right|< 3\)
\(\Rightarrow\left|x-3\right|\in\left\{0;1;2\right\}\)
\(\Rightarrow x-3\in\left\{1;\pm1;\pm2\right\}\)
Thay \(x-3=0\Rightarrow x=3\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=-2\Rightarrow x=1\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
<=>x+3+5 chia hết x+3
=>5 chia hết x+3
=>x+3 thuộc {1,-1,5,-5}
=>x thuộc {-2,-4,2,-8}
\(x^3=-8\)
\(x^3=-2^3\)
\(x=-2\)
\(x^3=-8\)
\(\Rightarrow x^3=\left(-2\right)^3\)
\(\Rightarrow\left(-2\right)^3=\left(-2\right)^3\)( luôn đúng )
Vậy x = -2