K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)\left(\frac{x+2}{2008}+1\right)\left(\frac{x+17}{1993}+1\right)=0\) 0

\(\Leftrightarrow\frac{x+2020}{2009}\cdot\frac{x+2020}{2008}\cdot\frac{x+2020}{1993}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{1993}\right)=0\)

\(\Rightarrow x+2020=0\)(do \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{1993}\ne0\)

\(\Leftrightarrow x=2020\)

vậy.........................................................................................................................................

8 tháng 12 2018

\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)

\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)

\(2008x+201840=2009x\Rightarrow x=201840\)

p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha

8 tháng 12 2018

Boul đẹp trai_tán gái đổ 100% sai 100%

Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840

Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi 

Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !

11 tháng 7 2016

a)  \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)

     \(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)

     \(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)

     \(\Leftrightarrow x+2010=0\) ( vì 1/2003  +  1/2006  --  1/2011  -- 1/2015   \(\ne\)0)

    \(\Leftrightarrow x=-2010\)

câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<

1 tháng 2 2019

a) \(0,25x^3+x^2+x=0\)

\(\Leftrightarrow x\left(0,25x^2+x+1\right)=0\)

\(\Leftrightarrow x\left[\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2\right]=0\)

\(\Leftrightarrow x\left(\frac{1}{2}x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)

Vậy....

b) \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)

\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1+\frac{-x}{2009}+1\)

\(\Leftrightarrow\frac{2-x+2007}{2007}=\frac{1-x+2008}{2008}+\frac{-x+2009}{2009}\)

\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)

\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)

\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

\(\Rightarrow2009-x=0\)

\(\Leftrightarrow x=2009\)

Vậy....

28 tháng 4 2018

\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)

\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)

\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)

\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)

\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)

28 tháng 4 2018

x=-2011

1 tháng 2 2017

\(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010}=3\)

\(\Leftrightarrow\frac{x-2008-2009-2010}{2008}+\frac{x-2008-2009-2010}{2009}+\frac{x-2008-2009-2010}{2010}=0\)

\(\Leftrightarrow\left(x-2008-2009-2010\right)\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)

\(\Leftrightarrow x-6027=0\Leftrightarrow x=6027\)

\(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

\(=>\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)

\(=>\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)

\(=>\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

\(=>x+2010=0\)

\(=>x=-2010\)

18 tháng 2 2020

\(pt\Leftrightarrow\frac{x}{2009}+\frac{1}{2009}+\frac{x}{2008}+\frac{2}{2008}=\frac{x}{3}+\frac{2007}{3}+\frac{x}{4}+\frac{2006}{4}\Leftrightarrow\frac{x}{2009}+\frac{x}{2008}-\frac{x}{3}-\frac{x}{4}=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x=\frac{\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}}{\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}}=-2010\)

23 tháng 1 2016

1) =0

3)=(37988-1)/2

23 tháng 1 2016

3) Q=(3+1)(3^2+1)(3^4+1)....(3^3994+1)

=(3-1)(3+1)(3^2+1)(3^4+1)...(3^3994+1)

=(3^2-1)(3^2+1)(3^4+1)...(3^3994+1)

=(3^4-1)(3^4+1)...(3^3994+1)

=.........

=(3^3994-1)(3^3994+1)

=3^7988-1