CMR
1^3+3^3+5^3+7^3=2^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)
Áp dụng bất đẳng thức Cauchy-Schwartz, ta có: \(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\ge\frac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}=\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)
Dấu "=" xảy ra khi: \(\frac{1}{2a+b}=\frac{1}{2b+c}=\frac{1}{2c+a}\Leftrightarrow2a+b=2b+c=2c+a\)
Bạn vui lòng chỉ post 1 bài 1 lần thôi. Đăng nhiều làm loãng box toán đó bạn.
5: \(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)
\(=3-5-6+\dfrac{-1}{4}+\dfrac{7}{4}+\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{6}{5}-\dfrac{3}{2}\)
\(=-8+\dfrac{3}{2}+1+\dfrac{-3}{10}\)
\(=-7+\dfrac{15-3}{10}=-7+\dfrac{6}{5}=-\dfrac{29}{5}\)
6: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=6-5-3-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}+\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
7: \(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)
\(=9-2-10+\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{-3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\)
=-3+1
=-2
8: \(=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=8+6-3+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}-1-\dfrac{2}{4}\)
\(=11+2-1-\dfrac{1}{2}\)
=11+1/2
=11,5
2) -3(4 - 7) + 5(-3 + 2)
= -3.4 + 3.7 - 5.3 + 5.2
= -12 + 21 -15 + 10
= 31 - 27
= 4
4) -5(2 - 7) + 4(2 - 5)
= -5.2 + 5.7 + 4.2 - 4.5
= -10 + 35 + 8 - 20
= 38 - 30
= 8
cái này là chứng minh chia hết chứ bạn
nhầm. là chia hết cho 2^3