K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

undefined

16 tháng 10 2023

Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)

16 tháng 10 2023

Ta có:

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)  

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) 

Thay giá trị x và y vào M ta có:

\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)

\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)

\(M=1\)

21 tháng 1 2021

a, \(\left|4x-8\right|\le8\)

\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)

\(\Leftrightarrow16x^2-64x+64\le64\)

\(\Leftrightarrow16x^2-64x\le0\)

\(\Leftrightarrow16x\left(x-4\right)\le0\)

\(\Leftrightarrow0\le x\le4\)

b, \(\left|x-5\right|\le4\)

\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)

\(\Leftrightarrow x^2-10x+25\le16\)

\(\Leftrightarrow x^2-10x+9\le0\)

\(\Leftrightarrow1\le x\le9\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)

c, \(\left|2x+1\right|< 3x\)

TH1: \(x\ge-\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow2x+1< 3x\)

\(\Leftrightarrow x>1\)

\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

TH2: \(x< -\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow-2x-1< 3x\)

\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)

Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

21 tháng 1 2021

d, \(\left|x+1\right|+\left|x\right|< 3\)

\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)

\(\Leftrightarrow\left|x^2+x\right|< 4-x\)

Xét hai trường hợp để phá dấu giá trị tuyệt đối

e, Tương tự câu d

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

28 tháng 11 2016

Câu 1: Giá trị của x thỏa mãn

|x+2,37|+|y5,3|=0

Để GTBT bằng 0 thì |x+2,37| = 0 và |y5,3| = 0

-> x = -2,37 , y = 5,3

Vậy x = -2,37

Câu 2: Giá trị của y thỏa mãn

−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0

-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)

-> |y−1,37| = 0 -> y = 1,37

Vậy y = 1,37