Tính 3S - 2^2017. Biết S = 1- 2+ 2^2- 2^3+ 2^4- 2^5+ .... + 2^2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:

chấm hỏi lớn ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

S = 2^2017 -1-2-2^2-2^3-2^4-...-2^2016
=2^2017-(1+2+2^2+2^3+2^4+....+2^2016)
Đặt A =1+2+2^2+2^3+2^4+...+2^2016
2.A =2+2^2+2^3+2^4+...+2^2016+2^2017
=>A =2^2017-1
S=2^2017-(2^2017-1) =2^2017-2^2017 +1=1

a, \(S_1=3+4+6+8+...+2016+2017\)
\(S_1=3+\left(4+6+8+...+2016\right)+2017\)
Số số hạng của (4 + 6 + 8 + ... + 2016) là:
\(\left(2016-4\right)\div2+1=1007\)
Tổng của (4 + 6 + 8+ ... + 2016) là:
\(\frac{\left(4+2016\right).1007}{2}=1017070\)
\(\Rightarrow S_1=3+4+6+8+..+2016+2017=3+1017070+2017=1019090\)
b, \(S_2=2+3+5+7+...+2017+2018\)
\(S_2=2+\left(3+5+7+...+2017\right)+2018\)
Số số hạng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{2017-3}{2}+1=1008\)
Tổng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{\left(3+2017\right).1008}{2}=1018080\)
\(\Rightarrow S_2=2+3+5+7+...+2017+2018=2+1018080+2018=1020100\)

Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
S = 1- 2+ 2^2- 2^3+ .... + 2^2016
2S = 2-22+23-24+...+22017
S+2S = (1-2+22-23+...+22016)+(2-22+23-24+...+22017)
3S = 1 + 22017
3S - 22017 = 1+22017-22017 = 1