K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)

c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)

\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)

e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(x\ge0\)

\(\Rightarrow x\in\left\{1;9;25\right\}\)

4 tháng 2 2016

\(\sqrt{\left(2x-\sqrt{16}\right)^2}+\left(y^2.64\right)^2+lx+y+zl=0\)

\(\Rightarrow\sqrt{2x-4}+8y^4+lx+y+zl=0\)

\(\sqrt{2x-4};8y^4;lx+y+zl\ge0\)mà \(\sqrt{2x-4}+8y^4+lx+y+zl=0\)

\(\Rightarrow\sqrt{2x-4}=8y^4=lx+y+zl=0\)

=>2x-4=y4=lx+y+zl=0

=>x=2;y=0;z=-2

Vậy x=2;y=0;z=-2

4 tháng 2 2016

vô yahoo hỏi đáp là biết

23 tháng 2 2019

Để \(\left(x^2-1\right)\left(x^2-16\right)< 0\) thì 

\(\hept{\begin{cases}x^2-1< 0\\x^2-16>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>16\end{cases}}\Leftrightarrow-4< x< -1\) hoặc \(\hept{\begin{cases}x< 1\\x>4\end{cases}}\) (loại)

Vậy \(-4< x< -1\)

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

b: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

d: Để M nguyên thì \(x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)

13 tháng 6 2018

x=3,y=6,z=4

13 tháng 6 2018

Ta có :  \(4x=2y=3z\)

\(\Rightarrow\frac{4x}{12}=\frac{2y}{12}=\frac{3z}{12}\) \(\Leftrightarrow\frac{x}{3}=\frac{y}{6}=\frac{z}{4}\)

Đặt  \(\frac{x}{3}=\frac{y}{6}=\frac{z}{4}=k\left(k\ne0\right)\)

 \(\Rightarrow\hept{\begin{cases}x=3k\\y=6k\\z=4k\end{cases}}\)

Mà  \(2x-3y+z=16\)

\(\Rightarrow2.3k-3.6k+4k=16\)

\(\Leftrightarrow6k-18k+4k=16\)

\(\Leftrightarrow k.\left(6-18+4\right)=16\)

\(\Leftrightarrow-8k=16\)

\(\Leftrightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=3k=-6\\y=6k=-12\\z=4k=-8\end{cases}}\)

Vậy ...