C/m \(6^{1000}-1\)chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Vì 7 là số nguyên tố nên \(a^{7-1}-1⋮7\)(định lí fermat nhỏ)
=>\(a^6-1⋮7\)
ta có 6\(\equiv\)1 (mod 7)
=> 61000 \(\equiv\)11000 ( mod 7)
=> 61000 -1 \(\equiv\)1-1 (mod 7)
=>61000 -1\(\equiv\)0 (mod 7)
=> 61000-1\(⋮\)7(dpcm)