Cho đa thức :
f(x)=2x^2-x+5 và g(x)=1-5x-2x^2
Tính Q(x)=f(x)-g(x)
Tìm x để gt của đa thức : Q(x)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a) Ta có: \(g\left(x\right)=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
Vì \(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)
\(\Leftrightarrow-1+a+b=0\)
\(\Leftrightarrow a+b=1\left(3\right)\)
Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)
\(\Leftrightarrow-4+2a+b=0\)
\(\Leftrightarrow2a+b=4\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)
Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)
Các phần sau tương tự
\(P\left(x\right)+Q\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(f\left(x\right)-g\left(x\right)=3x^4+3x^3-5x^2+x-5-x^4-3x^3+3x^2-5x+7\)
\(=2x^4-2x^2-4x+2\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4-2x^2-4x+2\left(1\right)\)
\(P\left(x\right)-Q\left(x\right)=g\left(x\right)+h\left(x\right)\)
\(g\left(x\right)+h\left(x\right)=x^4+3x^3-3x^2+5x-7+5x^4+2x^3+x^2-5\)
\(=6x^4+5x^3-2x^2+5x-12\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=6x^4+5x^3-2x^2+5x-12\left(2\right)\)
Từ ( 1 );( 2 ) thì tìm dc P(x) và Q(x)