Cho biểu thức.
A= (1/x-1 -2x/x3+x-x2-1) : (1-2x/x2+1)
a) Tìm ĐKXĐ
b) Rút gọn
c) Tìm x để A>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = (x - 3)(x² + 3x + 9) - (x³ + 3)
= x³ - 3³ - x³ - 3
= (x³ - x³) + (-27 - 3)
= -30
b) B = (2x + 1)(4x² - 2x + 1) - 8(x + 1/2)(x² - 1/2 x + 1/4)
= (2x)³ + 1³ - 8[x³ + (1/2)³]
= 8x³ + 1 - 8(x³ + 1/8)
= 8x³ + 1 - 8x³ - 1
= (8x³ - 8x³) + (1 - 1)
= 0
a; \(A=\left(\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\left(1-\dfrac{2x}{x^2+1}\right)\)
\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x^2+1\right)}:\dfrac{x^2+1-2x}{x^2+1}=\dfrac{1}{x-1}\)
b: Để A<0 thì x-1<0
hay x<1
c: Để A nguyên thì \(x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
a, \(A=x^2\left(2x-1\right)+x\left(x+8\right)=2x^3-x^2+x^2+8x=2x^3+8x\)
Thay x = -2, ta có:
\(2\cdot\left(-2\right)^3+8\cdot\left(-2\right)=-32\)
b, \(A=2x^3+8x=0\\ \Leftrightarrow2x\left(x^2+4\right)=0\\ \Leftrightarrow x=0\)
Vậy A=0 khi x=0
a,A = \(x^2\).( 2\(x\) - 1) + \(x\)(\(x+8\))
A = 2\(x^3\) - \(x^2\) + \(x^2\) + 8\(x\)
A = 2\(x^3\) + 8\(x\)
b, \(x=-2\) ⇒ A = 2.(-2)3 + 8.(-2) = - 32
A = 0 ⇔ 2\(x^3\) + 8\(x\) = 0
2\(x\left(x^2+4\right)\) = 0
vì \(x^2\) + 4 > 0 ∀ \(x\) ⇒ \(x\) =0
a: =x^3+6x^2+12x+8-(x^3+3x^2+3x+1)
=x^3+6x^2+12x+8-x^3-3x^2-3x-1
=3x^2+9x+7
b: =x^3-9x^2+27x-27-x(x^2-6x+9)
=x^3-9x^2+27x-27-x^3+6x^2-9x
=-3x^2+18x-27
c: =x^3+3x^2+3x+1-x^3-x^2-2x^2-4x
=-x+1
\(a,\left(x+2\right)^3-\left(x+1\right)^3\\ =\left(x+2-x-1\right)\left(x^2+4x+4+x^2+3x+2+x^2+2x+1\right)\\ =3x^2+9x+7\\ b,\left(x-3\right)^3-x\left(x-3\right)^2\\ =x^3-6x^2+9x-27-x^3+6x^2-9x\\ =-27\)