K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Ta có thành phần abc trong số abcabc được lặp lại 2 lần để tạo ra số này. Ta có ví dụ như thành phần 123 lặp lại 2 lần tạo nên số trên thành số 123123 giống như số trên và kết quả khi chia cho 143 là chia hết, kết quả là 861. Từ một ví dụ đó, ta suy ra rằng số abcabc hoàn tòan có thể chia hết cho 143.

P/S: Chúc bạn hok tốt !!!

6 tháng 6 2019

ta có: abcabc = abc x 1000 + abc = abc x 1001

Ta  thấy : 1001 chia hết  cho 143

=> abc x 1001 chia hết cho 143

=> abcabc chia hết cho 143

HOK TOT

13 tháng 7 2015

abcabc=abc.1001=abc.91.11 chia hết cho 11

tich dung cho minh nha

13 tháng 7 2015

abcabc = 1001 x abc

            = 11 x 91 x abc

           luôn luôn chia hết cho 11

a. aaa có dấu gạch trên đầu chia hết cho 37

Ta có aaa=a.37

          aaa= a.3.37 chia hết cho 37

Hk tốt

31 tháng 7 2016

Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)

\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)

Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)

Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11

31 tháng 7 2016

abcabc = 1000 . abc + abc = 1001 . abc = 11 . 91 . abc

Vậy abcabc chia hết cho 11.

14 tháng 10 2018

a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.

Chắc là đề cho \(\overline{abc}⋮3\)

b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)

Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.

Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.

Chúc bạn học tốt!

11 tháng 6 2016

Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!

Câu 1:

p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2

Nếu p=3k+2

=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)

=>p=3k+1

=>p+8=3k+1+8=3k+9 là hợp số (đpcm)

Câu 2:

Ta có: abcabc=abc.1001=abc.7.11.13

Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)

10 tháng 6 2016

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

4 tháng 8 2015

abcabc=abc.1001=91.(11abc) chia hết cho 91

4 tháng 8 2015

abcabc=1001.abc=91.11.abc

VÌ 91 CHIA HẾT CHO 91 NÊN 91.11ABC CHIA HET CHO 91(ĐPCM)
------------------------------------------------------------------------------------------

27 tháng 9 2019

1 Đáp án c

2 a không b có

3 ?

4 ?

5 ?

27 tháng 9 2019

1.Câu c và d chia hết cho 6

2.a chia hết cho 2

   b chia hết cho 5

   c chia hết cho 2 và 5

   d chia hết cho 2

3.a *=0;2;4;6;8

   b *=0;5

   c *=0

4.aaa=a.111=a.3.37 chia hết cho 37

   abcabc=abc.1001=abc.91.11 chia hết cho 11

   aaaaaa=a.111111=a.15873.7 chia hết cho 7

câu 5 mình ko biết nha bạn