Cho ba số a;b;x thuộc Z và ax - by chia hết cho ( x + y ) . Chứng tỏ ay - bx chia hết cho ( x + y ) , biết rằng ( x + y ) khác 0 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ba số chia hết cho 2 là 3572; 5372; 7532
b)3 số chia hết cho cho 3 là ko có vì 2+3+5+7=17 ko chia hết cho 3
c) 3 số chia hết cho 5 là 2375: 3725: 2735.
HT
k cho mình nha
@@@@@@@@@@@@@@2
a.
\(u_5=18\Rightarrow u_1+4d=18\) (1)
\(4S_n=S_{2n}\Rightarrow\dfrac{4n\left(2u_1+\left(n-1\right)d\right)}{2}=\dfrac{2n\left(2u_1+\left(2n-1\right)d\right)}{2}\)
\(\Rightarrow4u_1+2\left(n-1\right)d=2u_1+\left(2n-1\right)d\)
\(\Rightarrow2u_1-d=0\Rightarrow d=2u_1\) (2)
Thế (2) vào (1):
\(\Rightarrow9u_1=18\Rightarrow u_1=2\Rightarrow d=4\)
b.
Do a;b;c là 3 số hạng liên tiếp của 1 CSC công sai 2 nên: \(\left\{{}\begin{matrix}b=a+2\\c=a+4\end{matrix}\right.\)
Khi tăng số thứ nhất thêm 1, số thứ 2 thêm 1 và số thứ 3 thêm 3 được 1 cấp số nhân nên:
\(\left(a+1\right)\left(c+3\right)=\left(b+1\right)^2\)
\(\Rightarrow\left(a+1\right)\left(a+7\right)=\left(a+3\right)^2\)
\(\Rightarrow a^2+8a+7=a^2+6a+9\)
\(\Rightarrow a=1\Rightarrow b=3\Rightarrow c=5\)
a) Các số lập được là:
450;504;540
b) Các số lập được là;
405;450;540
đáp án nè bn
a)số đó chia hết cho 2 là:504,540,450
b)số đó chia hết cho 5 là 504,405,540
đúng thì bn nhớ tc nhé
Đặt số đã cho là 4bc, khi bỏ chữ số 4 ta được số có hai chữ số là bc
4bc+bc=450
400+bc+bc=450
2xbc=50
bc=25
Số có 3 chữ số là 425
Giả sử ay - bx chia hết cho x+y
Mà ax-by chia hết cho x+y
=>(ax-by)+(ay-bx) chia hết cho x+y
=> ax-by+ay-bx chia hết cho x+y
=> (ax+ay)-(bx+by) chia hết cho x+y
=> a(x+y)-b(x+y) chia hết cho x+y
=> (a-b)(x+y) chia hết cho x+y (đúng)
=> giả sử đúng
Vậy ay-bx chia hết cho x+y
Ta có: (a - b)(x + y) luôn chia hết cho (x + y)
Theo giả thiết ax - by chia hết cho (x + y)
=> (a - b) (x + y) - (ax - by) chia hết cho (x + y)
=> ax + ay -bx -by - ax + by chia hết cho (x + y)
=> ay - bx chia hết cho 9x + y)
(ĐPCM)