Cho \(\Delta ABC\) có ba cạnh bằng nhau. Kẻ \(BH\perp AC\) tại H; \(CK\perp AB\) tại K. Gọi O là giao điểm của BH và CK. C/minh: \(AO\perp BC\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
14 tháng 6 2022
Xét ΔABC có
BH là đường cao
CK là đường cao
BH cắt CK tại O
Do đó:O là trực tâm
=>AO\(\perp\)BC
31 tháng 12 2022
Xét ΔABC có
BH<HC
mà BH là hình chiếu của AB trên BC
và CH là hình chiếu của AC trên BC
nên AB<AC
11 tháng 5 2023
a: Xét ΔABH vuông tai H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC co
AH,CN là trung tuyến
AH cắt CN tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của CB
HE//AB
=>E là trung điểm của AC
=>B,G,E thẳng hàng
11 tháng 2 2020
copy thì ghi cho người ta cái link ra cho nhanh nha bạn
https://hoc24.vn/hoi-dap/question/74892.html
xét \(\Delta ABC\)có 3 cạnh bằng nhau
\(\Rightarrow\Delta ABC\) là \(\Delta\)đều
ta có: \(BH\perp AC\); \(CK\perp AB\)( giả thiết)
\(\Rightarrow BH\)và \(CK\) lần lượt là các đường cao của \(\Delta\)đều \(ABC\)( tính chất \(\Delta\) đều)
ta lại có: \(O\)là giao điểm của \(CK,BH\)
\(\Rightarrow O\)là trực tâm của \(\Delta ABC\)đều
\(\Rightarrow AO\) là đường cao của \(\Delta ABC\)
\(\Rightarrow AO\perp BC\) ( điều phải chứng minh)