K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Với x = 0,  5x = 5= 1⇒y2 + y + 1 = 1⇒y = 0

Với  x ≠ 0, ta thấy  5 x có tận cùng là 5. Vậy nên y2  + y + 1 cũng có tận cùng là chữ số 5.

Hay y2  + y có tận cùng là chữ số 4. y2  + y = y(y + 1) là tích của hai số liên tiếp nên không xảy ra trường hợp có chữ số tận cùng là 4.

Vậy x = 0; y = 0

bạn tham khảo nhé

NV
20 tháng 1 2022

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)

b: Để A nguyên thì 2n+3 chia hết cho n

=>3 chia hết cho n

=>n thuộc {1;-1;3;-3}

c: Th1: n=2

=>n+3=5(nhận)

TH2: n=2k+1

=>n+3=2k+4=2(k+2)

=>Loại

d: Gọi d=ƯCLN(2n+3;2n+5)

=>2n+5-2n-3 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>PSTG

NV
12 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

 \(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)

\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)

\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)

\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)

\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)

Dấu "=" xảy ra khi \(x=y=0\)

28 tháng 2 2021

Ta có:(x,y) = 1 =>x, y nguyên tố cùng nhau

 

                          x

              1

                      3

                             y

            6

                     4

(LOẠI) (NHÂN)

Vậy x = 3;y = 4

28 tháng 2 2021

Ta có:(x,y) = 1 =>x, y nguyên tố cùng nhau

 

X

1

3

Y

6

4

(LOẠI) (NHÂN)

Vậy x = 3;y = 4

31 tháng 10 2020

1. Tìm x

a) (x-2012) x 2010= 0

                            x=2012

b)10+3x= 64+36

             x=30

Bài 2: chịu

Bài 3:chịu

14 tháng 2 2020

Ta có: 2022 là một số chẵn nên (x+y)(x-y) chia hết cho 2 tức là (x+y) hoặc (x-y) chia hết cho 2.

Khi đó x và y cùng tính chẵn lẻ (cùng chẵn hoặc cùng lẻ) suy ra x+y và x-y đều chia hết cho 2. 

      Nên tích (x+y)(x-y) chia hết cho 4 mà 2022 không chia hết cho 4 nên không có x,y thỏa mãn bài toán

14 tháng 2 2020

 Vũ Duy Quang

Đề bài là 5x+3y và 5x-3y chứ không phải là x,y

30 tháng 9 2021

x.y hay xy ?

18 tháng 12 2023

24 + 2\(xy\) = 5\(x\)

5\(x-\)2\(xy\) = 24

\(x.\left(5-2y\right)\) = 24

24 = 23.3  ⇒ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Lập bảng ta có:

\(x\) 1 2 3 4 6 8 12 24
5 - 2y 24 12 8 6 4 3 2 1
y \(\dfrac{-19}{2}\) \(\dfrac{-7}{2}\) \(\dfrac{-3}{2}\) \(\dfrac{-1}{2}\) \(\dfrac{1}{2}\) 1 \(\dfrac{3}{2}\) 2

Theo bảng trên ta có các cặp số tự nhiên (\(x;y\)) thỏa mãn đề bài là:

(\(x;y\) )= (8; 1); (24; 2)