K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

S= 60+61+62+63+64+...+6104+6105+6106+6107

= (60+61)+(62+63)+...+(6104+6105)+(6106+6107)

=(6+1)+62(6+1)+...+6104(6+1)+6106(6+1)

=(1+62+...+6104+6106)(6+1)

=7(1+62+...+6104+6106) chia hết cho 7 (dpcm)

bạn chúng minh tương tự (nhóm 4 số hạng liền nhau) để S chia hết cho 259

26 tháng 7 2023

S=1+7+...+72021

S=(1+7)+(72+73)+...+(72020+72021)

  =(1+7)+72(1+7)+...+72020(1+7)⋮8

Để chứng minh S chia hết cho 57, ta cần chứng minh (7^2021 - 1) chia hết cho 342 (vì 342 = 57 * 6).

Ta biểu diễn 7^2021 - 1 dưới dạng (7^3)^673 - 1, và áp dụng công thức a^3 - b^3 = (a - b)(a^2 + ab + b^2), ta có:

(7^3)^673 - 1 = (7^3 - 1)((7^3)^2 + 7^3 + 1)

Vì 7^3 - 1 = 342 và (7^3)^2 + 7^3 + 1 = 342^2 + 342 + 1 = 117649 + 342 + 1 = 118992 nên ta có:

(7^3)^673 - 1 = 342 * 118992

Vì 342 chia hết cho 57 nên (7^3)^673 - 1 chia hết cho 57.

Do đó S = (7^2021 - 1)/6 chia hết cho 57.

 

26 tháng 7 2023

57 hay 56 vậy bạn?

 

2 tháng 9 2016

1) S = 1 + 2 + 2^2 + ... + 2^99 ( có 100 số; 100 chia hết cho 4)

S = (1 + 2) + (2^2 + 2^3) + ... + (2^98 + 2^99)

S = 3 + 2^2.(1 + 2) + ... + 2^98.(1 + 2)

S = 3 + 2^2.3 + ... + 2^98.3

S = 3.(1 + 2^2 + ... + 2^98) chia hết cho 3 ( đpcm)

3) lm tươg tự câu 1, nhóm 4 số 

3) Để thừa ra số 1 đầu tin, típ theo nhóm 3 số 

KL: S chia 7 dư 1

Bài 1: y=5; x=5

Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)

Bài 3: 

a: *=5

b: *=0; *=9

c: *=9

15 tháng 11 2016

cau 1

2đáp án y=0 thì x=1
y=5 thì x=5
 

19 tháng 11 2016

1) 134xy chia hết cho 5

=>y=0 hoặc y=5

+)Nếu y=0

=>134xy=134x0

Để 134x0 chia hết cho 9 thì 1+ 3 + 4 + x + 0 = 8 + x chia hết cho 9

=>x=1

+)Nếu y=5

=>134xy=134x5

Để 134x5 chia hết cho 9 thì 1 + 3 + 4 + x + 5 = 13 chia hết cho 9

=>x = 5

Vậy y = 0 thì x = 1 hoặc y = 5 thì x = 5

2) 1x8y2 chia hết cho 4 và 9

1x8y2 chia hết cho 4 <=>y2 chia hết cho 4 <=>y={1;5;9}

y=1=>1x812 chia hết cho 9<=>(1+x+8+1+2) chia hết cho 9

<=>12+x chia hết cho 9 <=>x=6

y=5=>1x852 chia hết cho 9<=>(1+x+8+5+2) chia hết cho 9

<=>16+x chia hết cho 9 <=>x=2

y=9=>1x892 chia hết cho 9<=>(1+x+8+9+2) chia hết cho 9

<=>20+x chia hết cho 9 <=>x=7

 

 
16 tháng 4 2017

a) Giải:

Ta có: \(4n-5=4\left(n-3\right)+7\)

Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)

\(\Rightarrow n-3\inƯ\left(7\right)\)

\(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)

Nên ta có bảng sau:

\(n-3\) \(n\)
\(1\) \(4\)
\(-1\) \(2\)
\(-7\) \(-4\)
\(7\) \(10\)

Vậy \(n=\left\{2;4;-4;10\right\}\)

b) Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét:

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)

2 tháng 8 2015

a) S = 2 + 22 + 23 + ... + 2100

ta có: (2+22) + (23+24)+...+(299+2100)

          chc 3  + chc 3 +....+  chc 3

=> S chia hết cho 3

b) S = 2 + 22 + 23 + ... + 2100

ta có: (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)

                chc 15          +.......+    chc 15

=> S chia hết cho 15

chc nghĩa là chia hết cho nhak