- Trục căn thức ở mẫu :\(\frac{28}{\sqrt{11+2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
\(=\frac{1+\sqrt{2}-\sqrt{3}}{\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)}\)
\(=\frac{1+\sqrt{2}-\sqrt{3}}{2\sqrt{2}}\)
\(=\frac{2+\sqrt{2}-\sqrt{6}}{4}\)
\(\frac{\sqrt{3}}{\sqrt{3}-2}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}\)
\(=\frac{3+2\sqrt{3}}{3-4}\)
\(=-3-2\sqrt{3}\)
\(\frac{\sqrt{3}}{\sqrt{3}-2}=\frac{\sqrt{3}.\left(\sqrt{3}-2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}=\frac{9-2\sqrt{3}}{3-4}=2\sqrt{3}-9\)
\(\frac{1}{\sqrt{2}+\sqrt{3}}\\ =\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\\ =\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\\ =\frac{\sqrt{3}-\sqrt{2}}{1}=\sqrt{3}-\sqrt{2}\)
\(\frac{1}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}=\frac{\sqrt{2}-\sqrt{3}}{2-3}=\frac{\sqrt{2}-\sqrt{3}}{-1}=-\left(\sqrt{2}-\sqrt{3}\right)=-\sqrt{2}+\sqrt{3}\)
Ta có : \(\frac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{3\sqrt{3}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{3\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{3\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{2\sqrt{6}}\)
\(=\frac{3\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{2\sqrt{2}}=\frac{3\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{4}\)
\(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{2\cdot3}+3-5}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}=\frac{\sqrt{6}\cdot\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\sqrt{6}\cdot2\sqrt{6}}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}\)
Ta có \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) = \(\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}\)
= \(\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{12}\)
Ta có : \(\frac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}=\frac{\left(1-\sqrt{2}\right)\left(2\sqrt{3}+3\sqrt{2}\right)}{\left(2\sqrt{3}-3\sqrt{2}\right)\left(2\sqrt{3}+3\sqrt{2}\right)}=\frac{2\sqrt{3}+3\sqrt{2}-2\sqrt{6}-6}{12-18}\)
\(=\frac{\sqrt{12}+\sqrt{18}-\sqrt{24}-\sqrt{36}}{-6}\)\(=\frac{-\sqrt{12}-\sqrt{18}+\sqrt{24}+\sqrt{36}}{6}\)
\(\frac{2}{\sqrt{3}-5}=\frac{2\left(\sqrt{3}+5\right)}{3-5^2}=\frac{2\left(\sqrt{3}+5\right)}{-22}=\frac{-5-\sqrt{3}}{11}\)