cho n là số tự nhiên lẻ chứng minh 1/1.3+1/3.5+1/5.7+...+1/n(n+2)<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)
Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)
=1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)
=1/2.(1-1/n+2)
=1/2.(n+2/n+2-1/n+2)
=1/2.(n+2-1/n+2)
=1/2.n+1/n+2
=n+1/(n+2).2
Vì: n+1/(n+2).2<2003/2004
Suy ra:n+1/(n+2).2=x/2004
Suy ra:(n+2).2=2004
n+2 =1002
n =1000
Vậy n bằng 1000
mình làm câu 4 nha
Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)
=>(2n+1) : d và (3n+2) : d
=>3.(2n+1) :d và 2.(3n+2): d
=>(6n+3) :d và (6n+4) : d
=> ((6n+4) - (6n+3)) : d
=>1 :d => d=1
Vì d là ước chung của 2n+1/3n+2
mà d =1 => ƯC(2n+1/3n+2) =1
Vậy 2n+1/3n+2 là phân số tối giản
Tick mình nha bạn hiền .
câu 5 mình mới nghĩ ra nè ( có gì sai thì bạn sửa lại giúp mình nha)
Ta có : A=\(\dfrac{n+2}{n-5}\)
A=\(\dfrac{n-5+7}{n-5}\)
A=\(\left[\left(n-5\right)+7\right]\) : (n-5)
A= 7 : (n-5)
=> (n-5) thuộc Ư(7)=\(\left\{1;-1;-7;7\right\}\)
Suy ra :
n-5 =1=> n= 6
n-5= -1 =>n=4
n-5=7=>n=12
n-5= -7 =>n= -2
Vậy n = 6 ;4;12;-2
Mấy dấu chia ở câu 4 là dấu chia hết đó nha ( tại mình không biết viết dấu chia hết ).
Tick mình nha bạn hiền.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
1/ Ta có:
\(a^5-a^3+a=2\)
Dễ thấy a = 0 không phải là nghiệm từ đó ta có:
\(a^6-a^4+a^2=2a\)
\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)
\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)
Dấu = không xảy ra
Vậy \(a^6< 4\)
Câu 2/
Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
=\(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
=\(\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
=\(\dfrac{1}{2}-\dfrac{1}{4n+2}< \dfrac{1}{2}\)
đặt A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
=> 2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
<=> 2A=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}+.....+\dfrac{1}{2n-2}-\dfrac{1}{2n+1}\)
<=>2A=\(1-\dfrac{1}{2n+1}\)
<=> A=\(\left(1-\dfrac{1}{2n+1}\right)\)\(.\dfrac{1}{2}\)
<=> A=\(\dfrac{1}{2}-\dfrac{1}{2\left(2n+1\right)}\)
=>\(A< \dfrac{1}{2}\) (đpcm)