Cho x+2y<= 1, tìm giá trị nhỏ nhất của biểu thức:
\( P=\frac{1}{x^2+4y^2}+\frac{1+3x^2y^2}{xy} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2
Ta có:
\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)
Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
a) Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)
\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}5z-6y=0\\6x-4z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5z=6y\\6x=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{y}{5}=\frac{z}{6}\\\frac{z}{6}=\frac{x}{4}\end{cases}}}\)
\(\Leftrightarrow\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.4=12\\y=3.5=15\\z=3.6=18\end{cases}}\)
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla