\(3\frac{1}{2}+15\frac{4}{9}:\frac{26}{17}-2\frac{4}{9}:3\frac{5}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự

B1a)\(11\frac34-\left(6\frac56-4\frac12\right)+1\frac23\)
=\(11\frac34-6\frac56+4\frac12+1\frac23\)
=\(\left(11-6+4+1\right)+\left(\frac34-\frac56+\frac12+\frac23\right)\)
=\(10+\left(\frac{9}{12}-\frac{10}{12}+\frac{6}{12}+\frac{8}{12}\right)\)
=\(10+\left(-\frac{1}{12}+\frac{6}{12}+\frac{8}{12}\right)\)
=10+\(\frac{13}{12}\)
=\(\frac{120}{12}+\frac{13}{12}\)
=\(\frac{133}{12}\)
b)\(2\frac{17}{20}-1\frac{11}{5}+6\frac{9}{20}:3\)
= \(\frac{57}{20}-\frac{16}{5}+\frac{129}{20}\times\frac13\)
=\(\frac{57}{20}-\frac{16}{5}+\frac{129}{60}\)
=\(\frac{171}{60}-\frac{192}{60}+\frac{129}{60}\)
=\(\frac{108}{60}\)
=\(\frac95\)

Ta có:
\(\left(\right. \frac{13 \frac{2}{9} - 15 \frac{2}{3}}{18 \frac{3}{7} - 17 \frac{1}{4}} \cdot \frac{30^{2} - 5^{4}}{25 - 12 \cdot 5^{2}} \left.\right) \cdot x = \frac{\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17}}{4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17}}\)
Bước 1: Đổi hỗn số về phân số
- \(13 \frac{2}{9} = \frac{119}{9}\),
- \(15 \frac{2}{3} = \frac{47}{3}\),
- \(18 \frac{3}{7} = \frac{129}{7}\),
- \(17 \frac{1}{4} = \frac{69}{4}\)
Bước 2: Tính toán từng phần
Ta có:
\(\frac{119}{9} - \frac{47}{3} = \frac{119 - 141}{9} = \frac{- 22}{9}\) \(\frac{129}{7} - \frac{69}{4} = \frac{516 - 483}{28} = \frac{33}{28}\) \(30^{2} - 5^{4} = 900 - 625 = 275\) \(25 - 12 \cdot 25 = 25 - 300 = - 275\)
Khi đó:
\(\left(\right. \frac{- 22}{9} \div \frac{33}{28} \cdot \frac{275}{- 275} \left.\right) = \left(\right. \frac{- 22}{9} \cdot \frac{28}{33} \cdot \left(\right. - 1 \left.\right) \left.\right) = \frac{616}{297}\)
Bước 3: Tính vế phải
Tử số:
\(\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17} = \frac{35494}{36465}\)
Mẫu số:
\(4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17} = \frac{149645}{36465}\)
→ Vế phải:
\(\frac{35494}{36465} \div \frac{149645}{36465} = \frac{35494}{149645}\)
Bước 4: Giải phương trình
\(\frac{616}{297} \cdot x = \frac{35494}{149645} \Rightarrow x = \frac{35494}{149645} \cdot \frac{297}{616} = \frac{813}{7118}\)
Vậy:
\(\boxed{x = \frac{813}{7118}}\)
hỉu không =]]]

\(1\frac57-\frac57\times\frac{2}{11}-\frac57\times\frac{9}{11}\)
=\(\frac57\times\left(1-\frac{2}{11}-\frac{9}{11}\right)\)
=\(\frac57\times\left(\frac{11}{11}-\frac{2}{11}-\frac{9}{11}\right)\)
=\(\frac57\times1\)
=\(\frac57\)
\(\frac{5}{11}\times\frac{18}{29}-\frac{5}{11}\times\frac{8}{29}+\frac{5}{11}\times\frac{19}{26}\)
=\(\frac{5}{11}\times\left(\frac{18}{29}-\frac{8}{29}+\frac{19}{29}\right)\)
=\(\frac{5}{11}\times1\)
=\(\frac{5}{11}\)

2: \(=\dfrac{0.8}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\dfrac{71}{75}\cdot\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\)
\(=\dfrac{4}{5}\cdot\dfrac{5}{3}+\dfrac{71}{300}=\dfrac{471}{300}=\dfrac{157}{100}\)
3: \(=\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{2}{6}-\dfrac{2}{8}+\dfrac{2}{10}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)
=2/7-2/7=0

\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)