Cho a,b,c\(\ge0\),thoa man a+b+c=4.Chung minh rang:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhia:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)
\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)
Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
ta có:\(a,b,c\ge0;a+b+c=4\)
\(\Rightarrow a+b\le4\)\(mà\)\(a,b\ge0\)\(\Rightarrow0\le a+b\le4\left(1\right)\)
\(\Rightarrow\sqrt{a+b}\le2\)
\(\Rightarrow2-\sqrt{a+b}\ge0\)\(\left(2\right)\)
Từ (1) và(2)\(\Rightarrow\sqrt{a+b}\left(2-\sqrt{a+b}\right)\ge0\)
\(\Rightarrow2\sqrt{a+b}\ge a+b\)
CMTT:\(2\sqrt{b+c}\ge b+c;2\sqrt{c+a}\ge c+a\)
\(\Rightarrow2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\ge2\left(a+b+c\right)\)
Mà a+b+c=4\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge4\)
Dấu "="xảy ra khi \(\left(a;b;c\right)=\left(4;0;0\right);\left(0;4;0\right);\left(0;0;4\right)\)