2a2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)
\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)
\(=\left(a^2+b^2\right)\left(2-a\right)\)
Do \(a^2+b^2\ge0;\forall a;b\) nên:
\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)
\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)
\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)
\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)
\(A=2a^2+b^2-2ab+10a+42=\left(a^2-2ab+b^2\right)+\left(a^2+10a+25\right)+17=\left(a-b\right)^2+\left(a+5\right)^2+17\ge17\)
\(minA=17\Leftrightarrow a=b=-5\)
a:b:c=3:4:5⇒a/3=b/4=c/5=k
⇒a=3k, b=4k, c=5k
2a2+2b2-3c2=-100
⇔2.(3k)2+2.(4k)2-3.(5k)2=-100
⇔2.9k2+2.16k2-3.25k2=-100
⇔18k2+32k2-75k2=-100
⇔ -25k2=-100
⇔k2=4
⇔k=+-2
k=-2⇔a/3=-2⇔a=-6
b/4=-2⇔b=-8
c/5=-2⇔c=-10
k=2⇔a/3=2⇔a=6
b/4=2⇔b=8
c/5=2⇔c=10
Ta có:
a:b:c=3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)=> a=3k; b=4k; c=5k
=>\(2a^2=\left(6k\right)^2\text{};2b^2=\left(8k\right)^2;3c^2=\left(15k\right)^2\)
mà theo bài ra ta có: 2a2+2b2-3c2=-100
=> \(6k^2+8k^2-15k^2=-100\)
=> \(\left(6+8-15\right)k^2=-100\)
=>\(\left(-1\right)k^2=-100\)
=>\(k^2=\dfrac{-100}{-1}=100\)
=> k= 10 hoặc k=-10
TH1: a=3.10=30
b=4.10=40
c=5.10=50
TH2: a=3.(-10)=-30
b=4.(-10)=-40
c=5.(-10)=-50
\(2a^2+8b^2-8ab\)
\(=2\left(a^2-4ab+4b^2\right)\)
\(=2\left(a-2b\right)^2\)
?????
Câu hỏi đâu bạn???
câu hỏi??????????????????????????????????????đâu