Tìm số tự nhiên ab sao cho:
a) 56a9b \(⋮\)45
b) 56a3b chia hết cho 4 và 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 100 - x chia hết cho 4. Mà 100 chia hết cho 4 nên x chia hết cho 4
Do đó x là bội của 4 và x là số tự nhiên
Ta có: B(4) = {0; 4; 8; 12; 16; 20; 24;…}
Vì x không vượt quá 22 nên x ∈ {0; 4; 8; 12; 16; 20}
Vậy x ∈ {0; 4; 8; 12; 16; 20}.
b) 18 + 90 + x chia hết cho 9. Mà 18 và 90 chia hết cho 9 nên x chia hết cho 9
Do đó x là bội của 9 và x là số tự nhiên
Ta có: B(9) = {0; 9; 18; 27;…}
Vì x không vượt quá 22 nên x ∈ {0; 9; 18}
Vậy x ∈ {0; 9; 18}.
a) 100 - x chia hết cho 4. Mà 100 chia hết cho 4 nên x chia hết cho 4
Do đó x là bội của 4 và x là số tự nhiên
Ta có: B(4) = {0; 4; 8; 12; 16; 20; 24;…}
Vì x không vượt quá 22 nên x ∈ {0; 4; 8; 12; 16; 20}
Vậy x ∈ {0; 4; 8; 12; 16; 20}.
b) 18 + 90 + x chia hết cho 9. Mà 18 và 90 chia hết cho 9 nên x chia hết cho 9
Do đó x là bội của 9 và x là số tự nhiên
Ta có: B(9) = {0; 9; 18; 27;…}
Vì x không vượt quá 22 nên x ∈ {0; 9; 18}
Vậy x ∈ {0; 9; 18}.
chúc học tốt:>
a, Vì \(100⋮4\) nên \(x⋮4;x\le22\)
Vậy \(x\in\left\{0;4;8;...;20\right\}\)
b, Vì \(18⋮9;90⋮9\) nên \(x⋮9;x\le22\)
Vậy \(x\in\left\{0;9;18\right\}\)
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
\(a,\Rightarrow n+2+4⋮n+2\\ \Rightarrow n+2\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\\ b,\Rightarrow n-1+4⋮n-1\\ \Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{2;3;5\right\}\)
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5