tìm x,y,zϵq,biết
a)|x+19/55|+|y+1890/1975|+|z-2004|=0
b)|x+9/2|+|y+4/3|+|7/2|≤0
c)|x+3/4|+|y-1/5|+|x+y+z|=0
d)|x+3/4|+|y-2/5|+|z+1/2|≤0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xet khoang -5/3<x<1/3 suy ra 2x+5=3x-1 suy ra x=6 khong thoa man
xet khoang x<-5/3 suy ra -2x-5=3x-1 suy ra x=-4/5 tm
xet khong x>1/3 suy ra x=-4/5 ktm
vay.............................
`|x+2|+|x+7|=3x`
Bảng xét dấu gtr tuyệt đối:
\begin{array}{|c|cc|}\hline x&-\infty & &-7&&-2&&+\infty\\\hline |x+2|&&-x-2& |&-x-2&0&x+2&\\\hline |x+7|& &-x-7&0&x+7&|&x+7&\\\hline\end{array}
`@` Với `x < -7` có:
`-x-2-x-7=3x`
`<=>-5x=9`
`<=>x=-9/5` (ko t/m)
`@` Với `-7 <= x < -2` có:
`-x-2+x+7=3x`
`<=>-3x=-5`
`<=>x=5/3` (ko t/m)
`@` Với `x >= -2` có:
`x+2+x+7=3x`
`<=>-x=-9`
`<=>x=9` (t/m)
Vậy `S={9}`
\(||x+1|-1|=0\)
\(\Rightarrow|x+1|-1=0\)
\(|x+1|=0+1=1\)
\(\Rightarrow x+1=1\)hoặc \(x+1=-1\)
\(x=1-1=0\) \(x=\left(-1\right)-1\)
\(x=-2\)
\(\Rightarrow x\in\left\{0;-2\right\}\)
Ta có || x+1| -1| luôn lớn hơn hoặc bằng 0
Suy ra | x+1| -1= 0
| x+1| = 1
Suy ra: x+1=1 hoặc x+1= -1
x =0 hoặc x = -2
CM: 5x^2 +15x+20>0
Ta có: 5x^2 +15x +20
= 5( x^2 + 3x +4)
=5[(x^2 + 2.x.3/2 +9/4) -9/4 +4 ]
=5(x+3/2)^2 -7/4
Vì (x+3/2)^2 >0 với mọi x
=>5(x+3/2)^2 >0 với mọi x
=> 5(x+3/2)^2 - 7/4 >0 với mọi x
a: \(\left|x+\frac{19}{55}\right|\ge0\forall x\)
\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\)
\(\left|z-2004\right|\ge0\forall z\)
Do đó: \(\left|x+\frac{19}{55}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\begin{cases}x+\frac{19}{55}=0\\ y+\frac{1890}{1975}=0\\ z-2004=0\end{cases}\Rightarrow\begin{cases}x=-\frac{19}{55}\\ y=-\frac{1890}{1975}=-\frac{378}{395}\\ z=2004\end{cases}\)
b: Sửa đề: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)
Ta có: \(\left|x+\frac92\right|\ge0\forall x\)
\(\left|y+\frac43\right|>=0\forall y\)
\(\left|z+\frac72\right|\ge0\forall z\)
Do đó: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\ge0\forall x,y,z\)
mà \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)
nên \(\begin{cases}x+\frac92=0\\ y+\frac43=0\\ z+\frac72=0\end{cases}\Rightarrow\begin{cases}x=-\frac92\\ y=-\frac43\\ z=-\frac72\end{cases}\)
c: \(\left|x+\frac34\right|\ge0\forall x\)
\(\left|y-\frac15\right|\ge0\forall y\)
\(\left|x+y+z\right|\ge0\forall x,y,z\)
Do đó: \(\left|x+\frac34\right|+\left|y-\frac15\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac15=0\\ x+y+z=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac15\\ z=-x-y=\frac34-\frac15=\frac{11}{20}\end{cases}\)
d: \(\left|x+\frac34\right|\ge0\forall x\)
\(\left|y-\frac25\right|\ge0\forall y\)
\(\left|z+\frac12\right|\ge0\forall z\)
Do đó: \(\left|x+\frac34\right|+\left|y-\frac25\right|+\left|z+\frac12\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac25=0\\ z+\frac12=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac25\\ z=-\frac12\end{cases}\)