K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 giờ trước (21:14)

Ta xét các trường hợp:

Trường hợp 1: \(x < \frac{1}{4}\)

  • Khi đó \(x - 3 < 0 \Rightarrow \mid x - 3 \mid = 3 - x\).
  • Đồng thời \(4 x - 1 < 0 \Rightarrow \mid 4 x - 1 \mid = 1 - 4 x\).

Suy ra:

\(A = 2 \left(\right. 3 - x \left.\right) - \left(\right. 1 - 4 x \left.\right) = 5 + 2 x .\)


Trường hợp 2: \(\frac{1}{4} \leq x < 3\)

  • Khi đó \(x - 3 < 0 \Rightarrow \mid x - 3 \mid = 3 - x\).
  • Đồng thời \(4 x - 1 \geq 0 \Rightarrow \mid 4 x - 1 \mid = 4 x - 1\).

Suy ra:

\(A = 2 \left(\right. 3 - x \left.\right) - \left(\right. 4 x - 1 \left.\right) = 7 - 6 x .\)


Trường hợp 3: \(x \geq 3\)

  • Khi đó \(x - 3 \geq 0 \Rightarrow \mid x - 3 \mid = x - 3\).
  • Đồng thời \(4 x - 1 \geq 0 \Rightarrow \mid 4 x - 1 \mid = 4 x - 1\).

Suy ra:

\(A = 2 \left(\right. x - 3 \left.\right) - \left(\right. 4 x - 1 \left.\right) = - 2 x - 5.\)


Kết luận:

\(A = \left{\right. 5 + 2 x & \text{n} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x < \frac{1}{4} , \\ 7 - 6 x & \text{n} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; \frac{1}{4} \leq x < 3 , \\ - 2 x - 5 & \text{n} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 3.\)

22 giờ trước (21:16)

2(x-3)-(4x-1)
= 2x-6 -(4x-1)
= 2x-6-4x+1
=-2x-5

17 tháng 4 2021

\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}\)

Để biểu thức trên nhận giá trị âm khi \(\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}< 0\)

\(\Rightarrow x^3-2x^2-4x+8< 0\)do \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)< 0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)^2< 0\Leftrightarrow x< -2\)

 

26 tháng 2 2022

(-3).8/8.6 rút gọn

a: Ta có: \(P=\left(x-1\right)^2-4x\left(x+1\right)\left(x-1\right)+3\)

\(=x^2-2x+1-4x\left(x^2-1\right)+3\)

\(=x^2-2x+4-4x^3+4x\)

\(=-4x^3+x^2+2x+4\)

b: Thay x=-2 vào P, ta được:

\(P=-4\cdot\left(-8\right)+4-4+4=36\)

11 tháng 12 2020

Bài 1 : 

\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)

\(=x^2-4x+4-x+9=x^2-5x+13\)

Bài 2 : 

a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)

\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)

b, Thay x = -4 ta được : 

\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)

24 tháng 2 2017

TH1: x<1/4 

=>2|x-3|-|4x-1|=2(3-x)-(1-4x)=6-2x-1+4x=5+2x

TH2: \(\frac{1}{4}\le x\le3\)

=>2|x-3|-|4x-1|=2(3-x)-(4x-1)=6-2x-4x+1=7-6x

TH3: x>3

=>2|x-3|-|4x-1|=2(x-3)-(4x-1)=2x-6-4x+1=-2x-5

NV
26 tháng 12 2022

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

NV
26 tháng 12 2022

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????

a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)

\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)

\(=6x^2-3x+\dfrac{5}{2}\)

b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)

\(=3x-y-y-x+2x^2-2x\)

\(=2x^2-2y\)