Tìm GTLN GTNN của P=\(\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đk: \(x\ge2;y\ge-1;0< x+y\le9\)
Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)
Từ giả thiết suy ra
\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)
Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:
\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)
\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)
Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)
Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Mình tách thành hai phần nhìn cho dễ hiểu nhé !
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
+) \(\frac{x-3\sqrt{x}}{x-9}-1=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}-1=\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}\)
+) \(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x+x-9-x+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
=> \(\frac{-3}{\sqrt{x}+3}\div\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{-3}{\sqrt{x}+3}\times\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{4-x}\)
\(=\frac{3\left(\sqrt{x}-2\right)}{x-4}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3}{\sqrt{x}+2}\)

a,\(\frac{x}{\sqrt{x}+1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}+2\ge2.\sqrt{\left(\sqrt{x}-1\right).\frac{1}{\sqrt{x}-1}+2}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow\sqrt{x}-1=1\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\left(t/m\right)\)
Dmin = 4 <=> x=4
b,\(\frac{\sqrt{x-9}}{5x}\)
\(\sqrt{x-9}=\sqrt{\frac{\left(x-9\right).9}{9}}=\frac{1}{3}.\sqrt{\left(x-9\right).9}\le\frac{1}{3}.\frac{x-9+9}{2}=\frac{x}{2}\)
\(\Rightarrow D\le\frac{x}{\frac{6}{5x}}=\frac{x}{30x}=\frac{1}{30}\)
Dấu "=" xảy ra \(\Leftrightarrow x-9=9\Leftrightarrow x=18\)
Dmax=\(\frac{1}{30}\Leftrightarrow x=18\)
P/s : ko chắc lắm
\(a)\)\(P=\frac{x}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{1}{\sqrt{x}+1}}-2=2-2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}+1=\frac{1}{\sqrt{x}+1}\)\(\Leftrightarrow\)\(x=0\)
...

1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:

\(B=\dfrac{x-\sqrt[]{x}}{\sqrt[]{x}-\left(x+1\right)}\)
\(B\) xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-\left(x+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x+1\ne0,\forall x\in R\end{matrix}\right.\) \(\Leftrightarrow x\ge0\)
\(\Leftrightarrow B=\dfrac{x-\sqrt[]{x}+1-1}{-\left(x-\sqrt[]{x}+1\right)}\)
\(\Leftrightarrow B=-1+\dfrac{1}{x-\sqrt[]{x}+1}\)
\(\Leftrightarrow B=-1+\dfrac{1}{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+1}\)
\(\Leftrightarrow B=-1+\dfrac{1}{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
mà \(\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\ge0\)
\(\Rightarrow B=-1+\dfrac{1}{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le-1+\dfrac{4}{3}=\dfrac{1}{3}\)
\(\Rightarrow GTLN\left(B\right)=\dfrac{1}{3}\left(tại.x=\dfrac{1}{4}\right)\)

a) \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(P=\left[\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\left[\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{-4\sqrt{x}\cdot\sqrt{x}}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{4x}{\sqrt{x}-3}\)
b) \(P=\dfrac{4x}{\sqrt{x}-3}\)
\(P=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\)
Theo BĐT côsi ta có:
\(P\ge\sqrt{\dfrac{4\left(\sqrt{x}-3\right)\cdot36}{\sqrt{x}-3}}+24=36\)
Vậy: \(P_{min}=36\Leftrightarrow x=36\)
\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\ge\sqrt{x}+\sqrt{9-x}\)
\(\Rightarrow P^2\ge\left(\sqrt{x}+\sqrt{9-x}\right)^2=9+2\sqrt{x\left(9-x\right)}\ge9\)
\(\Rightarrow P\ge3\)
\(P_{\min}=3\) khi x=0 hoặc x=9
\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\le\sqrt{2\left(x+9-x\right)}+\frac12\left(x+9-x\right)=\frac92+3\sqrt2\)
\(P_{max}=\frac92+3\sqrt2\) khi \(x=9-x\Rightarrow x=\frac92\)