Tìm \(x\) ∈ \(Q\) sao cho \(x+\frac{1}{x}\) ∈ \(Q\)
Giải chi tiết cho mình ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x}=\frac{x}{8}\)
\(\Rightarrow2.8=x.x\Rightarrow16=x^2\)
\(\Rightarrow\)x = 4 hoặc x =-4
Để \(x+\frac{1}{x}\) xác định thì x≠0
Do x hữu tỉ và \(x+\frac{1}{x}\in Z\) , đặt \(x=\frac{a}{b}\) với a;b là các số nguyên khác 0, \(\left(a,b\right)=1\) và đặt \(x+\frac{1}{x}=n\in Z\)
Khi đó: \(\frac{a}{b}+\frac{b}{a}=n\Rightarrow a\left(\frac{a}{b}+\frac{b}{a}\right)=a.n\)
\(\Rightarrow\frac{a^2}{b}+b=a.n\Rightarrow\frac{a^2}{b}=a.n-b\)
Do a,b,n nguyên nên \(a.n-b\in Z\Rightarrow\frac{a^2}{b}\in Z\)
Mà \(\left(a,b\right)=1\Rightarrow b=\pm1\)
Chứng minh tương tự ta có \(\frac{b^2}{a}\in Z\) và (a,b)=1 nên suy ra \(a=\pm1\)
=>\(x=\frac{a}{b}=\pm1\)
Vậy \(x=\pm1\) là số hữu tỉ thỏa mãn yêu cầu
Để tìm số hữu tỉ \(x\) sao cho biểu thức sau nhận giá trị nguyên:
\(x + \frac{1}{x}\)
ta cần phân tích và giải bài toán này một cách chi tiết.
Ta sẽ cố gắng tìm điều kiện để biểu thức này là một số nguyên.
Phương trình \(x^{2} - n \cdot x + 1 = 0\) là một phương trình bậc 2 đối với \(x\). Ta có thể giải phương trình này bằng công thức nghiệm phương trình bậc 2:
\(x = \frac{- \left(\right. - n \left.\right) \pm \sqrt{\left(\right. - n \left.\right)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}\)\(x = \frac{n \pm \sqrt{n^{2} - 4}}{2}\)
Để \(x\) là một số hữu tỉ, căn bậc hai \(\sqrt{n^{2} - 4}\) phải là một số nguyên, tức là:
\(n^{2} - 4 \&\text{nbsp};\text{ph}ả\text{i}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{ch} \overset{ˊ}{\imath} \text{nh}\&\text{nbsp};\text{ph}ưo\text{ng} .\)
Gọi \(n^{2} - 4 = k^{2}\) với \(k\) là một số nguyên. Ta có:
\(n^{2} - k^{2} = 4\)\(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\)
Giải phương trình \(\left(\right. n - k \left.\right) \left(\right. n + k \left.\right) = 4\), ta có các cặp nghiệm của \(\left(\right. n - k , n + k \left.\right)\) là các cặp số nhân với nhau ra 4:
Từ đây, ta tìm được các giá trị của \(n\) và \(k\).
\(n - k = 1 \text{v} \overset{ˋ}{\text{a}} n + k = 4\)
Cộng hai phương trình:
\(2 n = 5 \Rightarrow n = \frac{5}{2}\)
Vậy \(n = \frac{5}{2}\) không phải là một số nguyên, do đó loại.
\(n - k = - 1 \text{v} \overset{ˋ}{\text{a}} n + k = - 4\)
Cộng hai phương trình:
\(2 n = - 5 \Rightarrow n = \frac{- 5}{2}\)
Vậy \(n = \frac{- 5}{2}\) cũng không phải là một số nguyên, do đó loại.
\(n - k = 2 \text{v} \overset{ˋ}{\text{a}} n + k = 2\)
Cộng hai phương trình:
\(2 n = 4 \Rightarrow n = 2\)
Vậy \(n = 2\).
\(n - k = - 2 \text{v} \overset{ˋ}{\text{a}} n + k = - 2\)
Cộng hai phương trình:
\(2 n = - 4 \Rightarrow n = - 2\)
Vậy \(n = - 2\).
Với \(n = 2\) và \(n = - 2\), ta thay vào công thức giải phương trình bậc 2 \(x = \frac{n \pm \sqrt{n^{2} - 4}}{2}\).
\(x = \frac{2 \pm \sqrt{2^{2} - 4}}{2} = \frac{2 \pm \sqrt{4 - 4}}{2} = \frac{2 \pm 0}{2} = 1\)
\(x = \frac{- 2 \pm \sqrt{\left(\right. - 2 \left.\right)^{2} - 4}}{2} = \frac{- 2 \pm \sqrt{4 - 4}}{2} = \frac{- 2 \pm 0}{2} = - 1\)
Vậy, giá trị của \(x\) là 1 hoặc -1.
Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)
\(\frac{z-3}{4}=\frac{3z-9}{12}\)
Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7
Đây là bài toán tổng hiệu,đã có tổng của cả P(x) và Q(x) nên\(P\left(x\right)=\frac{x^2+1+2x}{2}=\frac{\left(x^2+x\right)+\left(x+1\right)}{2}=\frac{\left(x+1\right)^2}{2}\)
\(Q\left(x\right)=P\left(x\right)-2x=\frac{\left(x+1\right)^2}{2}-2x=\frac{x^2+2x+1-4x}{2}=\frac{x^2-2x+1}{2}=\frac{\left(x-1\right)^2}{2}\)
Nếu bn hỏi x^2-2x+1 sao lại =(x-1)^2 thì ph giống như (x+1)^2 nhé.
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)
Do \(x^2+y^2\)= (x-y)(x+y)=4=1.4=2.2=(-1)(-4)=(-2)(-2).
Khi đó ta chỉ tìm được x=\(\orbr{\begin{cases}2\\-2\end{cases}}\), y=0.
X2 + Y2 = 4
X x X + Y x Y = 4
(X + Y) x 2 = 4
X + Y = 4 : 2
X + Y = 2
Vậy X và Y có thể bằng 1 hoặc 0.
1a) \(Q=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q nguyên \(\Leftrightarrow\frac{3}{12-x}\inℤ\)
\(\Leftrightarrow12-x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{13;11;15;9\right\}\)
1b) Bạn tự thay từng giá trị của x vừa tìm được ở câu a) vào rồi tính y nhé :
Ta có :\(11x+18y=120\)(1)
VD: Thay \(x=13\)vào (1), ta được :
\(11\cdot13+18y=120\)\(\Leftrightarrow y=\frac{57}{18}\)
2) Ta có : \(\left(x-45\right)^2\ge0,\forall x\)
\(-\left|2y-5\right|\le0,\forall y\)
Dấu "=" xảy ra khi và chỉ khi :\(\left(x-45\right)^2=-\left|2y-5\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x-45=0\\2y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=45\\y=\frac{5}{2}\end{cases}}\)
Thay x = 45 ; y = 5/2 vào biểu thức M ta được:
\(M=45^2+\left(\frac{5}{2}\right)^2+\frac{29}{10}\cdot\frac{5}{2}-9\)
\(M=2029,5\)
Để \(x+\frac{1}{x}\) xác định thì x≠0
Khi đó do \(x\in Q\) nên \(\frac{1}{x}\in Q\)
\(\Rightarrow x+\frac{1}{x}\in Q\)
Vậy x≠0
@ Kẻ Mạo Danh ủa bạn, diễn đàn thì ai mà chả được trả lời, bạn ấy cũng có quyền trả lời câu hỏi của các bạn khác chứ, chứ đâu phải có bạn trả lời rồi thì mình không được trả lời đâu