Cho x + y + z = 0 và xy + yz + xz = 0. CMR: (x-1) ^2023 + y^ 2024 +(z+1)^ 2025 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: x+y+z=0
=>\(\left(x+y+z\right)^2=0^2=0\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
=>\(x^2+y^2+z^2=0\)
mà \(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)
nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)
\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)
=-1+0+1
=0

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$

Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b)
Ta có :
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²)
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm).


a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)

Ta có: x+y+z=0
=>\(\left(x+y+z\right)^2=0^2=0\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
=>\(x^2+y^2+z^2=0\)
mà \(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)
nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)
\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)
=-1+0+1
=0